

KE Texpress

Texql Guide

KE Software Pty Ltd

Copyright © 1993-2004 KE Software Pty Ltd
This work is copyright and may not be reproduced except
in accordance with the provisions of the Copyright Act.

Contents i

KE Texpress Texql Guide

Contents

Chapter 1 Introduction................................ 1-1

Terminology.. 1-3
Notational Conventions.. 1-4
Texql Features... 1-4
Special Symbols... 1-6
Reserved Words... 1-7
Example Tables.. 1-8

Contacts Table... 1-9
Loantypes Table... 1-11
Loans Table... 1-12

Chapter 2 User Interface................................ 2-1

Invocation.. 2-3
Default Invocation... 2-6
Comments.. 2-6
Statement Terminator.. 2-7
Help... 2-7
Command History.. 2-8

Editing Previous Commands....................................... 2-8
Saving Command Histories... 2-9
Restoring Command Histories.................................... 2-9

Describe Command.. 2-10
Listing Tables.. 2-11
Reading Input from a File... 2-12
Writing Output to a File... 2-13
Termination... 2-13

Chapter 3 Data Types and Attributes................................ ..3-1

Atomic Data Types.. 3-3
Null Values.. 3-5
Tuples.. 3-5
Tables and Nested Tables... 3-7
Reference Attributes.. 3-7
Type Compatibility... 3-8
Identifiers... 3-8
Renaming Identifiers using As.. 3-10

ii Contents

KE Texpress Texql Guide

Chapter 4 Query Language................................ 4-1

Select-From-Where Expressions.. 4-4
Select... 4-5

All Columns.. 4-5
Excluding Columns....................................... 4-6
Structured Attributes.................................... 4-6
Reference Attributes..................................... 4-8
Nested Selection... 4-8

From.. 4-9
Where.. 4-10

Aliasing a Sub-expression using With..................................... 4-11
Scoping Rules.. 4-12

Extracting Attributes from Tuples 4-12
Scoping Rules for SFW Expressions......................... 4-13

Functional Notation... 4-14
Boolean Expressions.. 4-14

And.. 4-14
Or .. 4-15
Not .. 4-15
Relational Operators... 4-16

Comparisons with Null... 4-17
Null Values.. 4-17
Relational Operators for Numeric Operands........................... 4-18
Between... 4-18
Text Operators... 4-19

Equality.. 4-19
Relational Operators... 4-20
Like ... 4-20
Contains... 4-21

Table and Tuple Operators... 4-24
Equality.. 4-24
Tuple Existence.. 4-24
Subset and Superset... 4-25

Comparing Atomic Expressions with Tables........................... 4-26
In ... 4-26
Has .. 4-27

Arithmetic Expressions.. 4-28
Unary Operators... 4-28
Binary Operators.. 4-29
Aggregate Functions.. 4-30

Min... 4-30
Max.. 4-31
Sum.. 4-31
Avg.. 4-32

Counting Tuples... 4-32

Contents iii

KE Texpress Texql Guide

Forming Tuples from Tables.. 4-33
Tuple Numbers.. 4-33
Tuple Access... 4-34
Table Expressions.. 4-35

Times... 4-35
Join.. 4-35
Union... 4-36
Intersect... 4-36
Except.. 4-37
Nesting Data into Tables.. 4-37
Unnesting Tables.. 4-38
Removing Duplicate Tuples...................................... 4-39
Sorting Tuples.. 4-40

Miscellaneous Text Functions.. 4-41
Stem .. 4-41
Phonetic... 4-42
Numwords... 4-42
Word.. 4-43
Words.. 4-43

Chapter 5 Data Manipulation Language............................. 5-1

Insert ... 5-3
Update... 5-5
Delete.. 5-7

Appendix A Example Tables and Data.............................. A-1

Contacts ... A-2
Loan Types... A-4
Loans.. A-5

Appendix B Error and Status Codes................................ .. B-1

Error Codes...B-2
Status Codes..B-5

Introduction 1-1

KE Texpress Texql Guide

Chapter 1

Introduction

Terminology.. 1-3
Notational Conventions.. 1-4
Texql Features... 1-4
Special Symbols... 1-6
Reserved Words... 1-7
Example Tables.. 1-8

Contacts Table... 1-9
Loantypes Table... 1-11
Loans Table... 1-12

1-2 Introduction

KE Texpress Texql Guide

Overview
The KE Texpress Information Management System is an object-oriented
database package which provides numerous extensions to the traditional
relational database model. The most significant extensions are in the area of
complex object support. KE Texpress supports the inclusion of the following
object components into an object definition:

• Text.

• Multi-valued fields.

• References to foreign objects (objects in different formats controlled by
software other than Texpress).

This manual describes the query language interface to Texpress. This query
language, called Texql, includes both query and data manipulation facilities.
While modelled on the industry standard SQL definition, it contains language
extensions compatible with the object-oriented features of Texpress. This results
in a distinctive SQL "feel" to the interface, significantly reducing the learning
time for experienced SQL programmers. But Texql is still able to harness the
power of the object-oriented model.

The most significant features of Texql are as follows:

• Support of text attributes.

• Tuples.

• Nested tables.

• Implicit joins using references.

Texql can also be used in conjunction with Titan Version 3.4 databases.

In this manual, each of the Texql language features is presented with a definition
and an example of its use and result. The remainder of this chapter discusses the
conventions and terminology used throughout this manual as well as the
Texpress tables used in the examples.

Chapter 2 describes how Texql is invoked and the many command line options
available. A general description of the Texql user interface is also provided.

Chapter 3 discusses the types supported by Texql and how fields can be
referenced.

Introduction 1-3

KE Texpress Texql Guide

The query interface of Texql is described in Chapter 4. This includes a
description of all operators and functions.

The data manipulation interface, covering insertions, updates and deletions, is
described in Chapter 5.

Appendix A includes a definition of the three example databases including all of
the sample data.

Appendix B provides a list of the error and status messages which can be
generated by Texql.

Terminology
Texpress uses terminology which reflects the object-oriented nature of the
product, and thus highlights the distinction between it and relational database
systems. However, Texql provides an interface to Texpress databases which
attempts to simulate a standard SQL interface to a relational database.

This section describes the terminology used by Texql in terms of the appropriate
terminology of Texpress. Refer to the Texpress Reference Manuals for a
description of Texpress terminology.

The following terms are used throughout this manual:

Texql KE Texpress

table This refers to a single Texpress database. All Texpress
databases, although controlled separately in terms of
access privileges, etc., are accessible as Texql tables.

column This refers to an item in a Texpress database.

nested table This refers to a Texpress multi-field item which is not of
type text or a multi-field text item without an associated
Look-up table. Multi-field text items without Look-up
tables are considered to be Texql text boxes, i.e. one
atomic value of (continuous) text.

tuple or row This refers to a record in a Texpress table or a record
derived by Texql as the result of a query.

1-4 Introduction

KE Texpress Texql Guide

nested tuple The multi-field Key and library items of Texpress are
represented as nested tuples in Texql. This means that
these items can be treated as atomic values or,
alternatively, their components can be individually
manipulated.

atomic value This refers to a value in a column of a tuple, i.e. the
value of a field within a Texpress record.

Notational Conventions
Texql is case insensitive except within text constants. Examples within this
manual use the following conventions:

• Texql keywords and symbols are shown in bold font and in lower case.

• Table and nested table identifiers are shown in italics.

• Tuple identifiers and atomic attribute identifiers are shown in normal font.

For example within this manual, commands are displayed in the format:.

select surname , maillist_tab
from contacts
where surname = 'Johnson ';

This command is a common Select - From - Where (SFW) clause. Texql key
words may be entered in upper case if desired.

Texql Features
Texql provides an SQL-like interface to Texpress databases. In keeping with the
object-oriented nature of Texpress, Texql incorporates extensions to the
relational model to support the text data type and multi-field items.

To provide text retrieval capabilities on text items in Texpress, Texql supports
the contains operator which permits text matching facilities identical to
Texpress. These facilities include word based queries, stemming and phonetic
retrieval operators and phrase retrieval.

Multi-field items are supported in Texql by the definition of nested tables (with
the exception of Texpress multi-field text items without a Look-up table which
are considered to be atomic values of continuous text). These nested tables

Introduction 1-5

KE Texpress Texql Guide

consist of a single column only with each atomic value in each tuple in the nested
table equating to a value in one of the fields of the appropriate multi-field item.

Nested tables maintain the object-oriented nature of Texpress applications by
accurately representing hierarchically defined complex object structures. The
equivalent relational model requires significant decomposition of these objects
into a series of separate tables. This results in greatly increased complexity of
design and subsequent query access. Although queries can be performed on these
decomposed objects and the results of these queries combined, the appropriate
hierarchical structure cannot be accurately recreated (as it can never be
accurately represented in such systems). Also in relational systems the continual
requirement for table joins is potentially very process expensive.

To access information in nested tables, Texql supports a recursive language
definition which allows a query expression to contain nested query expressions.
In fact, a select-from-where (SFW) expression in a Texql query can be used in
any place that an explicit table reference can be used.

Texpress linked Keys are defined in Texql as references. A reference is an
implicit join between two tables using a Key value identifier. Key operations are
extremely efficient in Texpress and reference attributes mean that an entire table
can appear to be nested as an attribute in another table.

In relational databases all join conditions must be provided explicitly. Texql also
supports such explicit joins but, in addition, through the use of reference
attributes, Texql supports implicit joins. A reference attribute has a domain
consisting of the key values of the referenced table. In formulating a query on a
table containing a reference attribute, the user is able to view the referenced table
entries as belonging to the outer table.

Texql commands can also be expressed in an alternative functional notation. For
example, a query to select the surname and mailing list columns for all tuples in
the contacts table can be expressed using the standard notation as:

select surname, maillist_tab
from contacts;

where the nested table, maillist_tab, in the same way atomic values are selected.
The same query can also be expressed using the functional notation as:

contacts[surname, maillist_tab];

1-6 Introduction

KE Texpress Texql Guide

Special Symbols
The following symbols are used in Texql:

() Tuple definition and grouping

{} Row number selection.

[] Column selection.

, Separator.

= <>

< <=

> >=

Logical and relational operators.

+ - * / % Arithmetic operators.

| Multiple tuple separator.

' Text constant begin and end delimiter.

" Identifier delimiter.

: Inner unnest operator.

:= Temporary table assignment, used in with clause.

; Statement delimiter.

#
--

Comments indicator

The following operators are supported within a Texql contains clause:

! Not.

= Exact word equivalence (case sensitive).

& Fold case word equivalence (case insensitive).

~ Word stemming.

@ Phonetic.

" Phrase begin and end delimiter.

Introduction 1-7

KE Texpress Texql Guide

^ $ * ?
[] { }

Pattern matching.

Reserved Words
The following are reserved words in Texql and in general should not be used as
identifiers.

after all and as

asc avg

before between boolean but

column contains count

default delete desc describe

distinct

e edit except exists

exit

false float forming from

h has help history

ifnull in inner insert

integer intersect into is

join

key

like list

max min

nest not null numwords

of on or order

outer

phonetic preserve

quit

read ref restore rownum

save select set stem

1-8 Introduction

KE Texpress Texql Guide

subset sum superset

table text times to

totuple true

union unnest update

values

where with word words

write

If an identifier the same as a reserved word is required then a delimited identifier
(identifier in double quotes) may be used. For example a column name of words
may be referenced using "words".

Example Tables
The examples in this manual are based on a simple bank loan registration system.
This example illustrates many of the features of Texql. However, it is not
intended to be a complete design for such a loan registration system.

The loan registration system comprises the following three tables:

contacts This table contains information about the people or organisations
who currently have a loan with the bank or are targeted by the bank
for various loan promotions.

loantypes This table describes each of the available loan types available and the
current applicable interest rate.

loans This table contains information about all current loans. It makes
references to contacts, for the person or organisation taking out the
loan, and loantypes, for the loan category information.

These tables can be described by the Texql describe command (refer to Chapter
2 for more information). The table descriptions are provided in the following
sections.

Note that these table descriptions are repeated in Appendix A of this manual
together along with a complete list of the data in each table.

Introduction 1-9

KE Texpress Texql Guide

Contacts Table

The Insertion Form for the contacts table is displayed in the folowing two
figures.

1-10 Introduction

KE Texpress Texql Guide

The contacts Texql table description can be obtained using the command:

describe contacts;

and is as follows:.

contacts[
contno integer,
title text,
firstnam text,
surname text,
position text,
company text,
address text,
country text,
town text,
postcode text,
phone text,
rating text,
exposure integer,
maillist_tab[

maillist text
],
modby text,
modon(

modon_1 integer,
modon_2 integer,
modon_3 integer

),
modat(

modat_1 integer,
modat_2 integer

),
remarks text

];

This table contains a column for the contact number (an integer Key value) plus
a variety of simple columns, containing atomic values only, for contact
identification and address details.

Each record in this table can include from zero to four mailing list categories. In
Texpress terminology, this is a multi-field item. In Texql, it is defined as a nested
table. The nested table name is defined as the Texpress item id concatenated with
the string _tab. The nested table contains a single column whose name is the
Texpress item id.

The contacts table also contains last modified information including Texpress
date and time library items. These are defined in Texql nested tuples.

Finally, the remarks item of Texpress is a multi-field text item and is considered
by Texql to be a simple atomic value of continuous text.

Introduction 1-11

KE Texpress Texql Guide

Loantypes Table

The Insertion Form for the loantypes table is displayed below.

The loantypes Texql table description can be obtained using the command:

describe loantypes;

and is as follows:

loantypes[
loanno integer,
interest float,
loanname text,
modby text,
modon(

modon_1 integer,
modon_2 integer,
modon_3 integer

),
modat(

modat_1 integer,
modat_2 integer

)
];

This table is contains columns for loan number (an integer Key value), interest
rate, loan type name and last modified information.

1-12 Introduction

KE Texpress Texql Guide

Loans Table

The Insertion Form for the loans table is displayed below.

The loans Texql table description can be obtained using the command:

describe loans;

and is as follows:

loans[
loanno integer,
contno(

contno integer
) ref contacts,
typeno(

loanno integer
) ref loantypes,
amount float,
term integer,
category_tab[

category text
]

];

The loans table contains several simple columns and a nested table for the multi-
field category item. However, this table also contains references to the contacts
and loantypes tables.

User Interface 2-1

KE Texpress Texql Guide

Chapter 2

User Interface

Invocation.. 2-3
Default Invocation... 2-6
Comments.. 2-6
Statement Terminator.. 2-7
Help... 2-7
Command History.. 2-8

Editing Previous Commands....................................... 2-8
Saving Command Histories... 2-9
Restoring Command Histories.................................... 2-9

Describe Command.. 2-10
Listing Tables.. 2-11
Reading Input from a File... 2-12
Writing Output to a File... 2-13
Termination... 2-13

2-2 User Interface

KE Texpress Texql Guide

Overview
Texql is a command line based interpreter. Texql commands may be entered
interactively or saved in script files to be run in batch mode. Numerous command
line options may be set in order to alter the default behaviour of Texql.

This chapter also describes the user interface features of Texql which are not
part of the query or data manipulation languages. These facilities are provided
for the entry and editing of Texql commands.

User Interface 2-3

KE Texpress Texql Guide

Invocation
Texql is invoked from the Unix command interpreter or shell by typing the
command:

texql

This commences execution of the interpreter and results in the display of the
Texql prompt.

There are many command line options available for Texql which alter the default
operation of the command. The complete Texql usage message is as follows:

Usage: texql [-R] [- Ttermtype] [- ceis] [- hn]
[-lfile] [- pstr] [- tstr] [table ...]

Options are as follows:

-R Read only mode. Tables may be accessed on a read only basis. Data
manipulation commands are not permitted.

-Ttermtype

Terminal type. This command line option can be used to invoke texql using
the Texpress terminal description, termtype. This can be useful for the
correct interpretation and display of extended ASCII characters. Generally
the terminal type setting is determined via the TERM environment variable
but may set explicitly using this option.

-c Echo commands As each command line is read it is immediately echoed.

-e Print error/status codes with all system messages. The complexity of a
language such as Texql results in a large number of possible input or
execution errors. For programs developed to interface to Texql, it is
essential to be able to identify and interpret returned error and status
messages so that appropriate action can be taken.

This option prefixes a unique numeric identifier to each error or status
message. Refer to Appendix C for a complete list of error and status
messages.

-hn Maintain a command history of n commands.

By default, Texql retains a history of the last 100 commands performed
during interactive sessions. By default, for non-interactive sessions, no
history is retained.

A history of commands enables a user to select a previously performed
command and re-execute it or modify it before re-executing. It can be very

2-4 User Interface

KE Texpress Texql Guide

useful for correction of simple syntax errors in complex statements or for
step-wise refinement of complex operations.

The editing of history commands and the saving and restoring of histories
is discussed in more detail later in this chapter.

-i Disable keyboard interrupts for the duration of the session

Texql responds to the keyboard interrupt, (typically generated by pressing
the Ctrl+C or DEL key). During interactive sessions, an interrupt results in
the current Texql operation being aborted and the next prompt displayed.
For non-interactive sessions, an interrupt terminates the session.

-lfile

Log error messages in file. Texql displays error messages directly on the
screen before displaying the next prompt. This command line option can be
used to also place all error messages in a specified file. This can be useful
for debugging Texql scripts or files of commands.

-pstr

Use a prompt of str. The default interactive prompt is:

texql n>

where n is the command number. There is no prompt by default for non-
interactive sessions.

This command line option can be used to explicitly set the prompt. If str
contains the character !, then this character is replaced by the current
command number (unless it is preceded in the prompt by a backslash
character, \). For example, the command:

texql - p"next !> "

produces the Texql prompt:

next n>

(where n is the command number), whereas the command:

texql - p"next\! "

produces the prompt:

next!>

-s Do not display status messages The data manipulation commands of Texql
(insert, update and delete) provide a status message on completion which

User Interface 2-5

KE Texpress Texql Guide

indicates the number of rows (records) affected. This command line option
can be used to suppress the display of these messages.

-tstr

Text output delimiter. By default text on output is delimited by single
quotes. This command line option can be used to change the begin and end
output text delimiters to a different character(s) sequence. For example the
command:

texql -t++

would produce text strings on output in the format:

++Johnson++

rather than the standard:

'Johnson'

Note that input text strings are not affected by this option and must still be
delimited by single quotes.

table ...

Texql opens each Texpress table as it is required, i.e. the first time it is
referenced. However, it can be forced to access certain tables upon
invocation by appending the table names to the command line. This results
in all checks for appropriate access being performed before the first Texql
statement involving that table is entered. If the user does not have
appropriate access rights then Texql terminates.

The use of table names on the command line does not restrict the tables
which can be accessed during that session.

2-6 User Interface

KE Texpress Texql Guide

Default Invocation
By default, Texql determines whether it is running interactively or its input has
been redirected from a file, pipe or socket. For interactive sessions, Texql
automatically displays a prompt between commands and sets the prompt to:

texql n>

where n is the command number, commencing from 1.

Commands are not echoed by Texql as echoing is generally performed by the
terminal driver. The number of commands retained in the history is set to 100.

For non-interactive sessions, Texql automatically suppresses the display of the
prompt. It also does not echo commands or status messages.

Comments
Comments are defined in Texql by using a # character or -- character sequence.
The remainder of the line after the comment marker is ignored. Comment
markers are ignored within text literals (i.e. text enclosed in single or double
quotes).

An example Texql command script including comments is as follows:

select all columns from loans table
#
select all from loans;

-- select all columns from loantypes table
-- (SQL style comments)
select all -- another comment
from loantypes;

User Interface 2-7

KE Texpress Texql Guide

Statement Terminator
All statements in Texql are terminated by a semi-colon, ';'. Statements are free
format and may extend over numerous lines. The statement terminator is not
recognised in text literals (text enclosed in single or double quotes). No other
text (other than comments) should follow on the same line as the statement
terminator.

The following two statements are completely equivalent:

select all columns from loans table.
#
select all from loans;

select all columns from loans table.
#
select
all
from
loans;

Help
The help command prints out some simple help information. An example of the
help display is shown below.

2-8 User Interface

KE Texpress Texql Guide

Command History
By default, for all interactive sessions, Texql maintains a history of the last 100
commands performed in the current session. Non-interactive sessions, by default
do not maintain a history. As described earlier in this chapter, Texql supports a
command line argument to explicitly set the number of commands retained in the
history. This is independent of whether the session is interactive or non-
interactive..

The history command, (also selected by h), displays all of the commands
retained in the history together with their command numbers.

In conjunction with this command history, Texql implements a simple history
substitution mechanism based on that provided by the Unix csh. Previous
commands in the history can be included in the current command using !
followed by a number. If the number is greater than zero, then it is treated as an
absolute command number. Otherwise, it is considered to be relative to the
current command number. The derived number identifies a command in the
command history and the exclamation mark and the command number are
replaced by the text of that command.

For example, !5, refers to command number five. The sequence !-1, or
alternatively !!, refers to the previous command.

texql 5> # Display the history of commands
texql 5> # in this session.
.......> #
.......> history;
 1 count(loantypes)
 2 select all
 from loantypes
 where interest < 10
 3 max(loantypes[interest])
 4 min(loantypes[interest])
texql 5> # Select the second command,
.......> # add another condition and repeat it.
.......> #
.......> !2 and interest > 8;

The command statement terminator is not saved in the history. Also, the history
command itself is never placed in the command history.

Editing Previous Commands

A command from the command history can be recalled and edited using the
user's preferred editor. The preferred editor is designated during the Texpress
installation process. If desired the shell environment variable, EDITOR, may be
set to indicate a particular editor.

User Interface 2-9

KE Texpress Texql Guide

To edit a command, the user simply types edit (or e) and the command number,
followed by a semi-colon. This invokes the preferred editor on a temporary file
containing the command. If no command number is specified, the previous
command is used. When the user saves the file and exits the editor, the new
command is then added to the history. It is not executed automatically. The !!
command must then be used to actually execute the command.

texql 5> # Display the history of commands
.......> # in this session.
.......> #
.......> history;
 1 count(loantypes)
 2 select all
 from loantypes
 where interest < 10
 3 max(loantypes[interest])
 4 min(loantypes[interest])
texql 5> # Edit the second command.
.......> #
.......> edit 2;
texql 5> # Invoke the newly edited command.
.......> #
.......> !!;

The edit command itself is never placed in the command history.

Saving Command Histories

A copy of the command history can be saved in a file using the command:

save 'filename';

This saves the command history in a format suitable for use with the restore
command described below.

Restoring Command Histories

A command history saved in a file can be restored using the command:

restore 'filename';

This restores the saved command history, replacing any existing history.

2-10 User Interface

KE Texpress Texql Guide

Describe Command
Any valid Texql query statement can be preceded by the keyword, describe.
This can be used to describe the table returned as a result of that query.

If the query accesses a single table only, then the describe command returns the
name of that table. Otherwise the table name is left blank. Then it describes each
of the columns of the table, giving the name of the column and its type, both
derived from the original tables.
Statement:

Describe the loantypes table
#
describe loantypes;

Output:

loantypes[
loanno integer,
interest float,
loanname text,
modby text,
modon(

modon_1 integer,
modon_2 integer,
modon_3 integer

),
modat(

modat_1 integer,
modat_2 integer

)
];

Statement:

Describe the result of a query joining two tables.
#
The query incorporates an explicit join
rather than the use of the reference.
#
describe
(

select loanname, term
from loantypes, loans
where loantypes.loanno = loans.loanno

);

Output:

[
loanname text,
term integer

];

User Interface 2-11

KE Texpress Texql Guide

Listing Tables
The command, list, can be used to list all of the tables available on the system.
The format of the list is similar to the format produced by the Texpress
command, tlsdb, when used with the -l option.
Statement:

List all of the available tables.
#
list;

Output:

contacts (texpress) 3 records 4.2%
loans (texpress) 4 records 4.5%
loantypes (texpress) 7 records 4.6%

A table name may also be specified as an optional argument.
Statement:

List just the contacts table.
#
list contacts;

Output:

contacts (texpress) 3 records 4.2%

2-12 User Interface

KE Texpress Texql Guide

Reading Input from a File
Input to texql can be redirected from the shell command line, as well as by using
the Texql read command. This command temporarily redirects input to come
from the specified file. Commands are read until the end of the file is reached.
These commands are not added to the history and history substitution is not
performed. Any input errors result in the termination of the read and input again
coming from standard input.

Assume that a file called saved.commands exists and contains the following
Texql commands:

Commands saved in a file for later re-use.
#
select all
from loantypes
where interest < 10;
count(loantypes);
max(loantypes[interest]);
min(loantypes[interest]);

Statement:

Read commands from the file, saved.commands.
#
read 'saved.commands';

Output:

Reading from " saved.commands"
>> # Commands saved in a file for later re-use.
>> #
>> select all
>> from loantypes
>> where interest < 10;
(1,9.50,'First home buyer','john',(15,06,1993),(11,50))
>> count(loantypes);
8
>> max(loantypes[interest]);
18.00
>> min(loantypes[interest]);
9.50
>>
Finished reading from " saved.commands"

It is possible to nest read commands so that a file containing commands to be
executed can also contain a further read command.

User Interface 2-13

KE Texpress Texql Guide

Writing Output to a File
The command, write, causes all output from Texql to be duplicated and sent to
both the standard output and to a file. The write command requires a single
argument of a file name surrounded by single quotes.

Entering the write command without specifying a file name indicates that the
duplication of output should be ceased.

A sequence such as:

Write output to the file, saved.output and then
perform a variety of commands.
#
write 'saved.output';
select all
from loantypes
where interest < 10;
count(loantypes);
max(loantypes[interest]);
min(loantypes[interest]);
write;

would result in the following output being saved in the file saved.output as well
as being displayed on the standard output of Texql.:

select all
from loantypes
where interest < 10;
(1,9.50,'First home buyer','john',(15,06,1993),(11,50))
count(loantypes);
8
max(loantypes[interest]);
18.00
min(loantypes[interest]);
9.50
write;

Termination
An interactive Texql session can be terminated be entering exit or quit (followed
by a semi-colon). Alternatively, Control-D (EOF) may be typed.

Non interactive sessions terminate when input end of file is detected.

Exit from Texql.
#
quit;

Data Types and Attributes 3-1

KE Texpress Texql Guide

Chapter 3

Data Types and Attributes

Atomic Data Types.. 3-3
Null Values.. 3-5
Tuples.. 3-5
Tables and Nested Tables... 3-7
Reference Attributes.. 3-7
Type Compatibility... 3-8
Identifiers... 3-8
Renaming Identifiers using As.. 3-10

3-2 Data Types and Attributes

KE Texpress Texql Guide

Overview
This chapter describes the format and use of each of the Texql data types and
more complex structure attributes of Texql. The mapping of Texpress data types
to Texql data types is also described.

Data Types and Attributes 3-3

KE Texpress Texql Guide

Atomic Data Types
Texql supports the following atomic data types:

text

This consists of a sequence of printable characters. Depending on the
retrieval operators used text is either treated as a sequence of words, or a
single string. Text is interpreted as words using the same rules as Texpress
(i.e. the space character and most punctuation characters are word-break
characters for most languages, while for multi-byte languages each
ideographic character is considered as a separate word).

Text constants are surrounded by single quote characters. The following
sequences can be embedded text constants:

\\ Replaced by \.

\' Replaced by '.

\" Replaced by ".

\b Replaced by backspace.

\f Replaced by form feed.

\n Replaced by newline.

\r Replaced by carriage return

\t Replaced by tab

\nnn Replaced by the character with octal ASCII code nnn (\0 not allowed).

\xnn
\Xnn Replaced by the character with hexadecimal ASCII code nn (\x0 not

allowed).

\<return>

Removed from the text constant but results in joining two lines, e.g.

'The quick brown fox jum\
ped over the lazy dog.'

is equivalent to the continuous string:

'The quick brown fox jumped over the lazy dog.'

3-4 Data Types and Attributes

KE Texpress Texql Guide

Texpress items of type Text or String map directly to the Texql text
atomic type. Expressions which return text values, together with the
boolean operators for text expressions, are described in Chapter 4.

integer

This consists of an optional leading plus or minus sign followed by one or
more digits, e.g.:

3053

The range of valid integer values is machine dependent but generally at
least from -231 to 231 - 1.

Texpress items of type Integer map directly to the Texql integer atomic
type. Arithmetic expressions which return integers are described in
Chapter 4.

float

This consists of an optional leading plus or minus sign followed by zero or
more digits, then a decimal point and zero or more digits, e.g.:

-128.25

The range of valid float values is machine dependent.

Texpress items of type Real map directly to the Texql float atomic type.
Arithmetic expressions which return floating point numbers are described
in Chapter 4.

boolean

Boolean constants are the keywords true or false.

Expressions which return boolean values are described in Chapter 4.

Other Texpress data types, such as dates time, latitude and longitude, are defined
as tuples of the appropriate basic data types.

Data Types and Attributes 3-5

KE Texpress Texql Guide

Null Values
The Texql keyword, null, returns the null value. It is given a type that will match
any other atomic type, with the exception of tuple and nested table attributes
which cannot have null values. Therefore null can be used with text, integer, float
and boolean columns.

Chapter 4 discusses how null values are handled by various operators.

Tuples
A tuple is a row or part of a row within a table or nested table. A tuple can be a
subset of the attributes in another tuple. For example, Texpress multi-field Key
and library items are represented as tuples. These tuples are composed of tuples
and atomic attributes.

A constant of type tuple is a list of constants separated by commas and
surrounded by (and). For example, the following tuple would be suitable for the
loantypes database:

(9, 9.90, 'Bank Transfer', 'john', (18, 6, 1993), (12, 55))

Individual attributes can be extracted from a tuple by use of the . (dot) extract
operator, and so are referenced as:

tuple_identifier.attribute_name.

If the above tuple identifier is loantype, then a reference to loantype.loanname
would be replaced by the text 'Bank Transfer'. Note that where there can be no
ambiguity, the tuple_identifier and extract operator can be omitted and so the
above attribute could be referenced simply as:

loanname

For any reference to a tuple attribute, it is only necessary to provide sufficient
identifiers to avoid ambiguity. So, for example, the query:

select loans.typeno.modon.modon_2
from loans;

could be written more simply as:

select typeno.modon_2
from loans;

or even:

loans[typeno.modon_2];

3-6 Data Types and Attributes

KE Texpress Texql Guide

It is necessary to provide typeno in the above example as the loans table contains
another modon_2 attribute through its reference to the contacts table.

The rules for resolving implicit extraction are described in Chapter 4.

Parentheses, (and), are used for the projection of attributes from a tuple while
still maintaining the tuple structure. For example, the following statement creates
a tuple structure for the year and month attributes of the modon nested tuple:

select loanname, modon(modon_3, modon_2)
from loantypes;

Parentheses are also used to construct tuples from other attributes. This is
described in more detail in Chapter 4.

Tuple projection always returns a tuple structure whereas tuple extraction
returns atomic values.

Data Types and Attributes 3-7

KE Texpress Texql Guide

Tables and Nested Tables
A table is a top-level object which equates to a Texpress database. All tables are
global and can be accessed by all users who have the appropriate privileges. A
nested table is an attribute of a table or a structured attribute which could be
another nested table.

The primary distinction between tables and nested tables is that a nested table is
an ordered list of tuples whereas a table is an unordered collection of tuples.

The contacts table contains a nested table for mailing lists (called maillist_tab).
An attribute of a nested table, such as maillist can be referenced as the nested
select:

(
select maillist
from maillist_tab

)

or:

maillist_tab[maillist]

which projects the maillist attribute from maillist_tab and returns a table of
values.

A constant of type table or nested table is a list of rows separated by | and
surrounded by [and]. For example, a table of data suitable for loading into the
loantypes table could be expressed as:

[
 9, 9.0, 'Bank Transfer','john', (17, 6, 1993), (12, 55) |
 10, 15, 'Investment', ' ian', (18, 6, 1993), (12, 55)
]

It is not possible for Texql to derive the structure of a table when it includes an
empty nested table, unless this structure can be derived from another tuple in the
table.

Reference Attributes
As described previously, Texql supports reference attributes. A reference
attribute is a tuple comprising the key of the table referenced. It is defined in
Texpress by use of a linked Key item.

Reference attributes provide support for implicit joins which are described in
Chapter 4.

3-8 Data Types and Attributes

KE Texpress Texql Guide

Type Compatibility
Two expressions are type compatible if the types of the expressions are one of
the following:

• The same type (for structured types this implies that all component
attributes are also type compatible); or

• One is an integer and the other a floating point number, in which case the
integer is converted to a floating point number; or

• One is a tuple with one attribute and the other is type compatible with that
attribute.

Identifiers
All outer level tables and atomic, structured and reference attributes are accessed
by use of the identifier name associated with them. An identifier is any
sequence of letters, digits and underscores (_). The first character of the
identifier name must be a letter.

Identifiers are case sensitive. Thus Loantypes, LOANTYPES and loantypes are
the different identifiers.

A reserved word can be used as an identifier by enclosing it in double quotes,
e.g. "from".

Atomic constants have an attribute identifier equal to the type of the constant.
All other constants have empty attribute identifiers and so cannot be specified on
a select line. Many queries also return tables with empty identifiers.

A query consisting of a single identifier which is a table name retrieves all of the
records in that table.
Statement:

Display all data from all records in
the loantypes table.
#
loantypes;

Output:

(1,9.50,'First home buyer','john',(15,06,1993),(11,50))
(2,12.90,'Investment property','john',(15,06,1993),(11,50))
(3,15.50,'Personal loan','john',(15,06,1993),(11,50))
(4,14.25,'Car','john',(15,06,1993),(11,50))
(5,10.75,'Home improvement','john',(15,06,1993),(11,51))
(6,16.50,'General loan','john',(15,06,1993),(11,51))
(7,18.00,'Overdraft','john',(15,06,1993),(11,51))

Data Types and Attributes 3-9

KE Texpress Texql Guide

(8,17.00,'Travel','john',(15,06,1993),(14,19))

Within a table the attributes can also be referenced using the keyword, column,
followed by the number of a column within that table. Column number
referencing also applies to nested tables.
Statement:

Display columns 2 and 3 from all rows
in the loantypes table.
#
select column 2, column 3
from loantypes;

Output:

(9.50,'First home buyer')
(12.90,'Investment property')
(15.50,'Personal loan')
(14.25,'Car')
(10.75,'Home improvement')
(16.50,'General loan')
(18.00,'Overdraft')
(17.00,'Travel')

Statement:

Display information via a combination
of column numbers and names, from all
rows in the loans table.
#
select amount, column 2.surname
from loans ;

Output:

(65000.00,'Citizen')
(40000.00,'Citizen')
(5000.00,'Johnson')
(10000.00,'Rustings')

In general it is advisable to avoid the use of column number referencing as it is
too heavily dependent on the table definition. However, occasionally it can be
more convenient than using as to rename otherwise empty attribute identifiers
(see Section 3.8).

3-10 Data Types and Attributes

KE Texpress Texql Guide

Renaming Identifiers using As
Sometimes it is desirable to define an alias for a table, tuple or attribute
identifier. Such an action is essential to clarify otherwise ambiguous references to
variables, e.g. joining a table to itself, or to assign an identifier to an attribute or
table for which no identifier exists, such as a derived table.

Aliases can be assigned to attribute and table identifiers by using the as
keyword.
Statement:

Select title, firstnam and surname columns
from contacts renaming each using as.
#
select title as t, firstnam as f, surname as s
from contacts as c;

Output:

('Mr','John','Citizen')
('Ms','Jennifer','Johnson')
('Mr','Peter','Rustings')

Functional notation can also be applied when using aliases (refer to Chapter 4 for
more information on functional notation).
Statement:

Select title, firstnam and surname columns
from contacts renaming each using as
and using functional notation.
#
contacts[title, firstnam, surname] as c[t, f, s];

Output:

('Mr','John','Citizen')
('Ms','Jennifer','Johnson')
('Mr','Peter','Rustings')

Statement:

Create a temporary table of names and
select from it using as.
#
select name
from ['Albert Jones' |
 'Bob Brown' |
 'Craig Thomas' |
 'David Jeans' |
 'Eric Davis'
] as names[name]
where name = 'David Jeans' ;

Output:

('David Jeans')

Data Types and Attributes 3-11

KE Texpress Texql Guide

It is also possible to use as to convert an attribute into a tuple with one attribute.
Statement:

Convert an atomic value into a tuple using as.
#
'john' as names(name);

Output:

('john')

Query Language 4-1

KE Texpress Texql Guide

Chapter 4

Query Language

Select-From-Where Expressions.. 4-4
Select... 4-5

All Columns.. 4-5
Excluding Columns....................................... 4-6
Structured Attributes.................................... 4-6
Reference Attributes..................................... 4-8
Nested Selection... 4-8

From.. 4-9
Where.. 4-10

Aliasing a Sub-expression using With..................................... 4-11
Scoping Rules.. 4-12

Extracting Attributes from Tuples 4-12
Scoping Rules for SFW Expressions......................... 4-13

Functional Notation... 4-14
Boolean Expressions.. 4-14

And.. 4-14
Or .. 4-15
Not .. 4-15
Relational Operators... 4-16

Comparisons with Null... 4-17
Null Values.. 4-17
Relational Operators for Numeric Operands........................... 4-18
Between... 4-18
Text Operators... 4-19

Equality.. 4-19
Relational Operators... 4-20
Like ... 4-20
Contains... 4-21

Table and Tuple Operators... 4-24
Equality.. 4-24
Tuple Existence.. 4-24
Subset and Superset... 4-25

Comparing Atomic Expressions with Tables........................... 4-26
In ... 4-26
Has .. 4-27

4-2 Query Language

KE Texpress Texql Guide

Arithmetic Expressions.. 4-28
Unary Operators... 4-28
Binary Operators.. 4-29
Aggregate Functions.. 4-30

Min... 4-30
Max.. 4-31
Sum.. 4-31
Avg.. 4-32

Counting Tuples... 4-32
Forming Tuples from Tables.. 4-33
Tuple Numbers.. 4-33
Tuple Access... 4-34
Table Expressions.. 4-35

Times... 4-35
Join.. 4-35
Union... 4-36
Intersect... 4-36
Except.. 4-37
Nesting Data into Tables.. 4-37
Unnesting Tables.. 4-38
Removing Duplicate Tuples...................................... 4-39
Sorting Tuples.. 4-40

Miscellaneous Text Functions.. 4-41
Stem .. 4-41
Phonetic... 4-42
Numwords... 4-42
Word.. 4-43
Words.. 4-43

Query Language 4-3

KE Texpress Texql Guide

Overview
This chapter describes the query language component of Texql. Queries take the
form of select-from-where. The following sections describe each of these
components. Then follows a description of the scoping rules used in Texql.

Later in the chapter descriptions of Texql operators and built-in functions are
provided.

4-4 Query Language

KE Texpress Texql Guide

Select-From-Where Expressions
A Select-From-Where (SFW) expression specifies a selection constraint on a
sub-expression restricting which tuples may be retrieved (the where component)
and a list of attributes, or expressions based on attributes, to for each tuple
retrieved (the select component or projection).

A SFW expression is used to retrieve data stored in Texpress databases as well
as to derive new data from this stored data.

The most common form of SFW expressions uses the words, select, from and
where. An alternative form uses functional notation where the table referenced
in the from component is specified first. This is followed by a list of projected
attributes or expressions, in square brackets, equating to the select component.

A simple example is to project the loanname attribute from the loantypes table,
selecting only the tuples (Texpress records) which contain an interest rate less
than 10%.
Statement:

select loanname
from loantypes
where interest < 10;

Output:

('First home buyer')

The functional notation for this query could be expressed as:

loantypes[loanname]
where interest < 10;

Each of the select, from and where components are described in more detail in
the following sections.

Query Language 4-5

KE Texpress Texql Guide

Select

The select component of an SFW expression provides a projection from the
referenced tables. It creates a table structure from these projections. However,
functions (such as the min function, described in Section 4.10), can be applied to
SFW expressions to produce atomic values.

The select component is a list of attributes or sub-expressions forming new
attributes from the table sub-expression on the from line. The order of attributes
in the select line defines the attribute order in the resulting table.

The projected list of expressions can include atomic values, tuples and nested
tables.

An example SFW expression to project the loan name and date/time of last
modification to the record could be entered as follows:
Statement:

select loanname , modon, modat
from loantypes
where interest < 10;

Output:

('First home buyer',(15,06,1993),(11,50))

All Columns

A projection of the keyword, all (or *), selects all attributes of the tables listed in
the from component. For example, to select all columns from the loantypes table,
the following SFW expression can be used:
Statement:

select all
from loantypes;

Output:

(1,9.50,'First home buyer','john',(15,06,1993),(11,50))
(2,12.90,'Investment property','john',(15,06,1993),(11,50))
(3,15.50,'Personal loan','john',(15,06,1993),(11,50))
(4,14.25,'Car','john',(15,06,1993),(11,50))
(5,10.75,'Home improvement','john',(15,06,1993),(11,51))
(6,16.50,'General loan','john',(15,06,1993),(11,51))
(7,18.00,'Overdraft','john',(15,06,1993),(11,51))
(8,17.00,'Travel','john',(15,06,1993),(14,19))

The above SFW expression could be replaced by the following functional
notation command:

loantypes ;

4-6 Query Language

KE Texpress Texql Guide

Excluding Columns

Texql allows designated attributes to be excluded from a selection by the
addition of a but component, as in the following example:
Statement:

select all but loanno, modby
from loantypes;

Output:

(9.50,'First home buyer',(15,06,1993),(11,50))
(12.90,'Investment property',(15,06,1993),(11,50))
(15.50,'Personal loan',(15,06,1993),(11,50))
(14.25,'Car',(15,06,1993),(11,50))
(10.75,'Home improvement',(15,06,1993),(11,51))
(16.50,'General loan',(15,06,1993),(11,51))
(18.00,'Overdraft',(15,06,1993),(11,51))
(17.00,'Travel',(15,06,1993),(14,19))

which is equivalent to the SFW expression:

select interest , loanname , modon, modat
from loantypes;

The excluded attributes in a but component can be a tuple or nested table or
attributes from a tuple or nested table.

Structured Attributes

A projection of a tuple (or nested table) can be achieved by simply referencing
that tuple's (or table's) identifier. However, a subset of the attributes of a tuple or
nested table can also be selected.

A nested select component can be used to select a subset of the attributes of a
nested table, as in the following example:
Statement:

select surname , (
select maillist
from maillist_tab

)
from contacts;

Output:

('Citizen',['Home improvement'|'Boating'])
('Johnson',['Home buyer'|'Travel'])
('Rustings',['Better finance'])

Alternatively, a subset of the attributes of a nested tuple or a table can be
projected using the following functional notation:

Query Language 4-7

KE Texpress Texql Guide

Statement:

select surname , maillist_tab[maillist]
from contacts;

Output:

('Citizen',['Home improvement'|'Boating'])
('Johnson',['Home buyer'|'Travel'])
('Rustings',['Better finance'])

New tuple attributes can be constructed in the select component by use of round
brackets, (and). For example, to create a tuple of the columns of a name from
the contacts table, the following SFW expression could be used:
Statement:

select (title, firstnam , surname) as name, company
from contacts;

Output:

(('Mr','John','Citizen'),'Acme Electronics Pty. Ltd.')
(('Ms','Jennifer','Johnson'),'Channel Ten')
(('Mr','Peter','Rustings'),' Rustings Pty. Ltd.')

Nested tuple attributes can be collapsed into a collection of columns of atomic
values. For example, the following query collapses the tuple structure for the
column modon.
Statement:

select surname , modon.all
from contacts;

Output:

('Citizen',15,06,1993)
('Johnson',15,06,1993)
('Rustings',15,06,1993)

The sequence .* could have been used in place of .all in this example. This query
is equivalent to the following query:

select surname , modon_1 , modon_2 , modon_3
from contacts;

If the identifier used was a reference attribute pointing to another table, then the
.all would have caused the reference to be followed and so would have been
replaced by all of the columns of the referenced table. Unnesting nested table
attributes requires the special functional operators, inner unnest and outer
unnest, which are described later in this Chapter.

Whenever a table name appears in both the select component and the from
component then it refers to each tuple of the table, thus the above query could
also be written as:

4-8 Query Language

KE Texpress Texql Guide

select surname , contacts.modon.all
from contacts;

However the following query returns a tuple containing a nested tuple equivalent
in structure to the contacts table query:

select contacts
from contacts;

Reference Attributes

Reference attributes represent implicit joins between tuples in the table
containing the reference and tuples in the referenced table. Each of the attributes
in the referenced tuple is directly available, through this implicit join, when
querying on the tuple containing the reference.

In the example tables, the loans table contains a reference to the contacts table
and to the loantypes table. The following query results in two implicit joins being
performed between the loans table and the contacts and loantypes tables
following the defined references:
Statement:

select surname , loanname
from loans;

Output:

('Citizen','First home buyer')
('Citizen','General loan')
('Johnson','Travel')
('Rustings','Overdraft')

As there is no name clash for surname or loanname in the above example, the
reference attribute identifier does not have to precede the referenced table
attribute identifier.

Nested Selection

The recursively defined syntax of Texql allows an expression that returns a table
to be used within a query at any place that a table can be used. This property of
Texql is referred to as orthogonality and, in many cases, simplifies query
formulation.

The recursive syntax allows a table to be joined at any level within a hierarchical
structure. For example, the following query joins the nested table of mailing list
entries with the outer table of loans.
Statement:

select surname, maillist_tab[maillist]
from loans;

Query Language 4-9

KE Texpress Texql Guide

Output:

('Citizen',['Home improvement'|'Boating'])
('Citizen',['Home improvement'|'Boating'])
('Johnson',['Home buyer'|'Travel'])
('Rustings',['Better finance'])

When implicit joins refer to the same attributes from the same table it may
necessary to rename attributes using as.

From

The from component within a SFW expression specifies the table (or tables)
from which tuples are to be selected. Theoretically, when more than one table is
given in the from component, tuples are selected from the cartesian product of
tuples from each table. However, the Texql optimiser may use information from
the where component to provide enhanced performance.

Specifying multiple table names in the from component is the means by which a
join query can be performed with the where component providing the actual join
condition.

An explicit join could be used in the absence of a reference attribute. For
example, the following query could be used to extract the surname and loanname
of tuples in the loans table:
Statement:

select contacts.surname, loantypes.loanname
from contacts, loantypes, loans
where loans.contno.contno = contacts.contno
and loans.typeno.loanno = loantypes.loanno ;

Output:

('Citizen','First home buyer')
('Citizen','General loan')
('Johnson','Travel')
('Rustings','Overdraft')

It is also possible to use a query expression in the from component of a Texql
query. This is most useful when a query expression is to be applied to a derived
table structure and not to a base or outer table. For example:
Statement:

select surname , amount , annual
from
(

select surname, amount,
amount * interest / 100 as annual

from loans
)
where annual > 5000 ;

4-10 Query Language

KE Texpress Texql Guide

Output:

('Citizen',65000.00,6175.000000)
('Citizen',40000.00,6600.000000)

Where

The where component of a query determines the tuples from the tables in the
corresponding from component which are used in computing the result of the
SFW expression. The where component is optional.

The condition of the where component within a SFW expression must be a
boolean expression, returning a result of either true or false. If the boolean
expression evaluates to true for a particular tuple from the table(s) in the from
component then it is returned in the result of the SFW-expression, projected
through the select component.
Statement:

select surname, firstnam, amount
from loans
where amount > 10000;

Output:

('Citizen','John',65000.00)
('Citizen','John',40000.00)

A where component can accompany any nested select-from expression.
Statement:

Select loans with amounts which are above average.
Consider only loans of amounts >= 10000.
#
select out.surname, out.firstnam, out.amount
from loans as out
where out.amount > avg

(
select tmp.amount
from loans as tmp
where tmp.amount >= 10000

);

Output:

('Citizen','John',65000.00)
('Citizen','John',40000.00)

Query Language 4-11

KE Texpress Texql Guide

Aliasing a Sub-expression using With
SFW queries can use aliases to simplify their formulation and avoid duplication
of some of their clauses. This can be achieved using the keyword, with.

A with clause follows a where clause, if any, and assigns a clause to an identifier.
All occurrences of the identifier throughout the SFW query are replaced by the
clause assigned to that identifier.

A query to select tuples from the contacts database which include mailing list
entries containing the word 'home' could be expressed as follows:
Statement:

Select tuples with a mailing list entry
containing the word 'home'.
#
select surname
from contacts
where exists

(
maillist_tab
where maillist contains 'home'

);

Output:

('Citizen')
('Johnson')

However, if it were necessary to project the appropriate mailing list entries as
well, then the following statement would be required:
Statement:

Select tuples with a mailing list entry containing
the word 'home'. Then project the surname and the
relevant mailing list entries only.
#
select surname,

(
maillist_tab
where maillist contains 'home'

)
from contacts
where exists

(
maillist_tab
where maillist contains 'home'

);

Output:

('Citizen',['Home improvement'])
('Johnson',['Home buyer'])

4-12 Query Language

KE Texpress Texql Guide

This could be expressed more simply using a with clause, as follows:
Statement:

Select tuples with a mailing list entry containing
the word 'home'. Then project the surname and the
relevant mailing list entries only. Use a with clause
to simplify the query.
#
select surname, homelist
from contacts
where exists(homelist)
with homelist :=

(
maillist_tab
where maillist contains 'home'

);

Scoping Rules
Resolution of identifiers is determined by the scoping rules of Texql. These rules
specify how an identifier in an expression is bound to an attribute or table. There
are two primary scoping rules in Texql:

1. Given a tuple and an attribute to extract from the tuple, Texql attempts to
locate the attribute in the tuple.

2. Given an attribute identifier in an SFW expression, Texql determines which
tables are searched (and in which order) to locate the attribute.

When locating an attribute, the former rule (1) is repeatedly applied for each
table searched by the latter rule (2) until the attribute is located.

Extracting Attributes from Tuples

If the extract operator is used, (i.e. an identifier reference of the form,
tuple.attribute), then the following steps are pursued until the attribute identifier
is found:

1. Check the attributes of the tuple structure.

2. Recursively check the attributes in any nested tuple structures.

3. Recursively follow any reference attributes of the tuple.

Texql reports an error if any of the above steps results in an ambiguity, i.e. the
identifier appears twice in a tuple structure or appears in two different nested
tuple structures or appears following two different reference attributes.

Query Language 4-13

KE Texpress Texql Guide

Tuple extraction does not consider columns in nested tables. If this is necessary,
then the unnest operators must be used (see Section 4.16.6).

Scoping Rules for SFW Expressions

A reference to a nested table (or tuple or attribute) refers to the table (or tuple or
attribute) within the current tuple. Consider the following example query which
contains selections from nested tables:

select amount,
(

select category
from category_tab
where category contains 'home'
or category contains 'car'

),
(

select maillist
from contno.maillist_tab
where maillist contains 'home'

)
from loans;

The outer select is applied to every tuple in the loans table. The inner selects are
applied to each tuple of the appropriate nested table within the current loans
tuple.

The following rules are used to resolve references to table and attribute
identifiers. The rules are followed, in order, until the identifier is resolved or until
the completion of the rules at which point Texql gives an appropriate error
message.

1. If an identifier appears on the right of an extract operator then it must be
extracted from the tuple on the left.

2. If an identifier in a select or where component appears as an extractable
attribute of a tuple in one of the tables in the from component then Texql
attempts to locate the identifier in that table.

3. If an identifier in a select or where component appears in a from
component then the attribute identifier refers to that table.

4. Steps 2 and 3 above are repeated, checking recursively the from
components from innermost to outermost SFW expression

5. If the identifier is still unresolved but it is an outer level table identifier then
it refers to that table.

4-14 Query Language

KE Texpress Texql Guide

Functional Notation
As described previously, Texql also supports a functional notation for the
representation of SFW expressions. This notation replaces the select and from
components with the table name followed by a projection list in square brackets.
For example, the following SFW expression:

select attrs1 but attrs2
from table_name;

could be expressed as:

table_name[attrs1 but attrs2] ;

This notation also applies to projections from nested tables and derived tables.

Boolean Expressions
The boolean operators, and, or, and not, perform the appropriate logical
boolean operations on the given boolean sub-expressions. Boolean sub-
expressions may return null as a valid value. So the boolean operators must use a
three-valued logic where null represents an unknown value.

The result of each boolean operator on all operand combinations is defined in the
following sections. An example operator use is also provided.

And

The and evaluation table is:

and true null false

true true null false

null null null false

false false false false

Statement:

Find the surnames and loan amounts of loans which
exceed $20,000 and have a term of < 100 months.
#
loans[surname, amount]
where amount > 20000
and term < 100;

Query Language 4-15

KE Texpress Texql Guide

Output:

('Citizen',40000.00)

Or

The or evaluation table is:

or true null false

true true true true

null true null null

false true null false

Statement:

Find the title, first name and surname of each
contact in Melbourne, Nunawading or Blackburn.
#
contacts[title, firstnam, surname]
where town = ' melbourne'
or town = ' nunawading'
or town = ' blackburn';

Output:

('Ms','Jennifer','Johnson')
('Mr','Peter','Rustings')

Not

The not evaluation table is:

not

true false

null null

false true

Statement:

Find details of loans to customers other
than Mr Citizen.
#
loans
where not surname = 'citizen' ;

4-16 Query Language

KE Texpress Texql Guide

Output:

(3,(2),(8),5000.00,12,['Overseas Travel'])
(4,(3),(7),10000.00,36,['Overdraft'])

Relational Operators
The relational operators are as follows:

= Equals.

<> Does not equal.

< Less than.

<= Less than or equal to.

> Greater than.

>= Greater than or equal to.

These relational operators can be applied to boolean operands resulting in a
boolean comparison being performed. If either operand is null, the expression
returns null. Otherwise, for the purposes of boolean comparisons, true is
considered greater than false.

Query Language 4-17

KE Texpress Texql Guide

Comparisons with Null
The operator, is null, returns true if the atomic sub-expression returns a null
value and false otherwise. The operator, is not null, returns true if the atomic
sub-expression does not return a null value and false otherwise.

These operators are not equivalent to = null and <> null, respectively.
Statement:

Identify contact tuples with unknown surnames.
#
select contno, company
from contacts
where surname is null;

Output:

(no output)

Null Values
A null value in a tuple represents an unknown value. Generally, processing any
list of values including a null results in a null value being returned (e.g. the sum
function). In order to prevent such a result, it is generally necessary to explicitly
prevent the selection of null values using a where clause including is not null.

To simplify processing of null values, Texql provides the function, ifnull, which
returns its first argument if this is not null. If the first argument is null, ifnull
returns its second argument.
Statement:

Example use of the ifnull function.
#
sum
(

select ifnull(amount, 0)
from loans

);

Output:

120000.000000

4-18 Query Language

KE Texpress Texql Guide

Relational Operators for Numeric Operands
The relational operators available for numeric operands are the same as those for
boolean operands, described in Section 4.5.1.

If both operands of a relational operator are of the same type (i.e. either integer
or floating point) then no conversion is necessary and the appropriate
comparison is performed.

If one operand is integer and the other float then the integer operand is
converted to float and the comparison is performed.

The null value is treated as an unknown value and so it is not considered equal to
any other value including null. Hence, the comparison:

null = null

returns the value:

null

Between
A closed range of values can be requested using two relational operators
combined using the boolean and operator. For example,

(val >= a) and (val <= b)

This can also be expressed using the between keyword as follows:

val between a and b

The between operator can only be applied to atomic values and all three
expressions (val, a and b) must be type compatible.
Statement:

Find loans with amounts between 10000 and 50000
#
loans
where amount between 10000 and 50000;

Output:

(2,(1),(6),40000.00,60,['Extension to family home'|'Car
purchase'|'Overseas Travel'])
(4,(3),(7),10000.00,36,['Overdraft'])

Query Language 4-19

KE Texpress Texql Guide

Text Operators
Most of the operators previously described can be applied to text operands.
However, there are several other operators exclusively provided for text
operations.

Equality

The standard equality operators, = (equals) and <> (does not equal) can be
applied to text operands. The two operands are otherwise compared literally.
Implicitly character case is insignificant.
Statement:

Find all contacts who are design engineers.
#
contacts[firstnam, surname]
where position = 'design engineer' ;

Output:

('John','Citizen')

Statement:

Find all loan types except personal
and general loans.
#
loantypes
where loanname <> 'general loan'
and loanname <> 'personal loan' ;

Output:

(1,9.50,'First home buyer','john',(15,06,1993),(11,50))
(2,12.90,'Investment property','john',(15,06,1993),(11,50))
(4,14.25,'Car','john',(15,06,1993),(11,50))
(5,10.75,'Home improvement','john',(15,06,1993),(11,51))
(7,18.00,'Overdraft','john',(15,06,1993),(11,51))
(8,17.00,'Travel','john',(15,06,1993),(14,19))

An explicit case sensitive or case insensitive text comparison can be performed
by preceding the text operand with the transformation operator, =, or, &,
respectively.
Statement:

Find all contacts who are design engineers.
Character case sensitive.
#
contacts[firstnam, surname]
where position = ='design engineer' ;

Output:

(no output)

4-20 Query Language

KE Texpress Texql Guide

Statement:

Find all contacts who are design engineers.
Character case insensitive.
#
contacts[firstnam, surname]
where position = &'design engineer' ;

Output:

('John','Citizen')

Relational Operators

The relational operators, >, >=, < and <= and between, can be applied to text
operands. A comparison is performed based on the ASCII value of the
characters in the operands. If either operand is null, the expression returns null.
Statement:

Find contacts with surnames beginning
with the letter A through M.
#
contacts[title, firstnam, surname]
where surname between 'A' and 'M';

Output:

('Mr','John','Citizen')
('Ms','Jennifer','Johnson')

Like

As with SQL, Texql supports the specification of substrings in queries on text
operands using the like operator. The like operator compares a text string
operand using the pattern matching rules of Texpress.

If either operand of the like operator is a null, the expression returns null.

The like operator accepts the following pattern matching characters:

* Matches zero or more characters at that position in the
operand.

? Matches any single character at that position in the operand.

[str] Matches a single character if that character is one of those in
str. The str string may contain a sequence such as a-z which
indicates the ASCII range of characters from a through to z.

[^str] Matches a single character if that character is not one of those
in str. Character ranges can be included as before.

Query Language 4-21

KE Texpress Texql Guide

{str} Matches zero or more characters which are contained in str.
The str string is as defined above, supporting character ranges.

{^str} Matches zero or more characters which are not contained in
str. The str string is as defined above, supporting character
ranges.

Although the anchor characters,, ^ for start of string and $ for end of string, are
supported, they are redundant as the whole text must be matched by the pattern,
not just a single word in the text.
Statement:

Find contacts with first names beginning with
a 'J', followed by any number of 'o', 'h' or 'e',
then followed by 'n' and then any other characters.
#
select title, firstnam, surname
from contacts
where firstnam like 'j{ohe}n*';

Output:

('Mr','John','Citizen')
('Ms','Jennifer','Johnson')

Contains

Texql supports the searching of text columns using the contains operator. This
operator enables the selection of tuples based on words, stems of words, sounds
of words, phrases or parts of words within the text attribute.

Within Texpress, a word is defined to be any sequence of letters, digits and
underscore characters. The space character and most punctuation characters are
word-break characters for most European languages, while for multi-byte
languages, each ideographic character is considered a separate word.

The contains operator returns true if a text attribute (left hand side) contains the
series of terms on the right hand side. The contents of the right hand side can be
anything acceptable in a single text field of a Texpress Query form. The rules for
matching are as defined by Texpress (refer to the Texpress Reference Manuals).

If multiple terms are specified in the text literal on the right hand side of the
expression then all terms must match for the column to match (boolean 'and'
relationship). Each term in the text literal can be one of the following:

term The word, term, must appear in the text. Implicitly case is
insensitive.

=term The word, term, must appear in the text. Case is sensitive.

4-22 Query Language

KE Texpress Texql Guide

&term The single word, term, must appear in the text. Case is
insensitive.

~term A word which is based on the same word stem as term must
appear in the text.

@term A word which sounds like term must appear in the text.

pattern A word which matches the pattern (using the pattern
matching rules described for the like operator) must appear
in the text.

!term The single word, term, must not appear in the text. Case is
insensitive.

"term1 term2 ..." The text must contain a phrase consisting of term1 followed
directly by term2, etc. Note that noise words are ignored
within phrases. Each of the terms may take the form of any
of the previous forms (exact terms, stems, sounds or
patterns).

One of the transformation operators, =, &, @ or ~, can
immediately precede a phrase, in which case it is applied to
all terms in the phrase.

Also, the not operator, !, can immediately precede a phrase,
in which case the search is for 'not' that phrase.

Any one of the transformation operators, =, &, ~ or @ may precede the literal
text in which case the operator is applied to all terms in the text. A
transformation explicitly specified within the text overrides any transformation
operator specified outside the text.

Following are several examples of the use of the contains operator.
Statement:

Find contacts where the remarks column contains
the word, 'tattslotto'.
#
contacts[firstnam, surname, position]
where remarks contains 'tattslotto' ;

Output:

('Peter','Rustings','Director')

Statement:

Find contacts where the position column contains
a word with the stem of 'market'.

Query Language 4-23

KE Texpress Texql Guide

#
contacts[firstnam, surname, position]
where position contains '~market' ;

Output:

('Jennifer','Johnson','Marketing Officer')

Statement:

Find contacts where the surname column contains
a name sounding like 'jansen'.
#
contacts[firstnam, surname, position]
where surname contains '@jansen';

Output:

('Jennifer','Johnson','Marketing Officer')

Statement:

Find contacts where the remarks column contains
a series of terms.
#
contacts
where remarks
contains 'excellent "good loan ~prospects" @jenafer';

Output:

(2,'Ms','Jennifer','Johnson','Marketing Officer','Channel
Ten',
'34 James Court','VIC','NUNAWADING','3131','859 2717 844
7891', 'UNK',80000,['Home buyer'|'Travel'], 'john',
(15,06,1993), (14,11),
'Jennifer is a good loan prospect but with no previous
credit history (apart from a good bankcard record). She has
an excellent position, albeit with a difficult job ahead of
her, and so we can expect her to be able to service loans.
However, current thinking prefers to minimise our exposure
until there is more track record.')

4-24 Query Language

KE Texpress Texql Guide

Table and Tuple Operators
Many of the basic Texql operators can be applied to variables of type table,
nested table or tuple. As described previously, a table is an unordered collection
of tuples, while a nested table is an ordered list of tuples. Each can, of course,
contain nested tuples.

Equality

The equality and inequality operators (= and <>) may be used for tables and
tuples.

Two tuples are considered equal if they are type compatible and the pairs of
values for each attribute in the tuples are equal.

Two tables are equal if they are type compatible, each of the tuples in the tables
are equal and the tuples are in the same order.
Statement:

Check that all home loans and only home
loans are under 12% interest rate.
#
(

loantypes
where loanname contains 'home'

) =
(

loantypes
where interest < 12

);

Output:

T

Tuple Existence

The exists operator returns true if its single operand, a table sub-expression,
contains at least one tuple. It returns false otherwise.
Statement:

Display the surnames of loans for which
there exists a type containing 'car'.
#
#
loans[surname]
where exists

(
category_tab
where category contains 'car'

);

Query Language 4-25

KE Texpress Texql Guide

Output:

('Citizen')

Subset and Superset

Two operators exist to determine if a table is a subset or a superset of another
table. These operators, subset of and superset of, take two operands which
must be tables identical in structure.

The subset of operator returns true if all of the tuples in the first table exist in the
second, while the superset operator returns true if all of the tuples of the second
table exist in the first.

The order of tuples in the tables is not important. Duplicate tuples are ignored
during the evaluation of these operators.
Statement:

Ensure that all loans are registered to
people listed in the contacts table.
#
(

loans[contno.contno]
) subset of
(

contacts[contno]
);

Output:

T

4-26 Query Language

KE Texpress Texql Guide

Comparing Atomic Expressions with Tables
Two operators exist to compare an atomic or tuple expression with a table.
These are the operators, in and has.

In
The in operator returns true if the left atomic or tuple sub-expression is
contained within the set of values returned by the right table sub-expression.
Otherwise false is returned.
Statement:

Find the surname of all contacts for
which there is a current loan tuple.
#
contacts[surname]
where contno in

(
loans[contno]

);

Output:

('Citizen')
('Johnson')
('Rustings')

Query Language 4-27

KE Texpress Texql Guide

Has

The has operator is functionally similar to the in operator. It returns true if the
set of values returned by the left table sub-expression contains the right atomic
or tuple sub-expression. Otherwise false is returned.

The right hand side of a has expression can also begin with one of the following
operators (if none is specified then = is assumed):

• =

• <>

• >

• >=

• <

• <=

• between

• like

• contains

• subset of

• superset of
Statement:

Find the surname of all contacts for
which there is a current loan tuple.
#
contacts[surname]
where
(

loans[contno]
) has contno ;

Output:

('Citizen')
('Johnson')
('Rustings')

4-28 Query Language

KE Texpress Texql Guide

Arithmetic Expressions
Texql supports a rich suite of arithmetic operators, each of which is described in
this section.

Unary Operators

The unary plus, +, and unary minus, -, operators can be applied to any sub-
expression that returns a numeric value. The unary minus operator changes the
sign of its operand. Both operators return null if the operand evaluates to null.

The type of the unary plus and unary minus expression is the same as the type of
their operand, with the exception of tuples with a single numeric attribute which
are first converted to an atomic numeric value.
Statement:

Prepare outstanding loan amounts
for inclusion on assets register.
#
select -amount
from loans;

Output:

(-65000.000000)
(-40000.000000)
(-5000.000000)
(-10000.000000)

Query Language 4-29

KE Texpress Texql Guide

Binary Operators

The binary arithmetic operators take two operands which are numeric, atomic
sub-expressions. The operators are as follows:

+ Addition.

- Subtraction.

* Multiplication.

/ Division.

% Modulus.

If either operand returns a value of type float, then a floating point value is
returned. Otherwise an integer value is returned. If either sub-expression returns
null then null is returned.
Statement:

Recalculate loan amounts
given a 10% reduction.
#
select amount * 0.9
from loans;

Output:

(58500.000000)
(36000.000000)
(4500.000000)
(9000.000000)

The + operator can also be applied to text operands, in which case it performs a
concatenation of its operands.
Statement:

Produce a table with a single text
attribute which is the concatenation
of the title, first name and surname
of all contacts.
#
select title + ' ' + firstnam + ' ' + surname
from contacts;

Output:

('Mr John Citizen')
('Ms Jennifer Johnson')
('Mr Peter Rustings')

4-30 Query Language

KE Texpress Texql Guide

Aggregate Functions

Texql supports the aggregate functions, min, max, sum and avg, which are
designed to process a vector of values (such as a table with one column only).
These functions generally take a SFW expression as their operand and produce a
numeric result.

For each of these functions, the existence of a null value in an argument to the
function causes the function to return the value null. Also if the table passed to
these functions is empty, then the min, max and avg functions return null, while
sum returns zero. This action can be overridden if a default component is added
after the where component, if any. Thus a query such as:

avg(loans[amount] where amount > 100000) ;

would return null if no loan met the where condition. However, the statement:

avg(loans[amount] where amount > 100000 default 0);

would return 0 rather than null.

These aggregate functions also create an implicit attribute identifier equal to the
name of the function.

Min

The min function can be applied to any single attribute table. The attribute must
be atomic and not a tuple or nested table.

If any of the values in the table are null, null is returned. If the table is empty,
then the min function returns the default component, if any, otherwise null. The
min function returns an atomic value whose type is the same as the attribute in its
table operand.

When min is applied to a table whose single column is of text type, then it
returns the value which is the first in lexicographic order (actually ASCII order).
Statement:

Determine the minimum loan amount.
#
min(loans[amount]) ;

Output:

5000.00

Query Language 4-31

KE Texpress Texql Guide

Max

The max function can be applied to any single attribute table. The attribute must
be atomic and not a tuple or nested table.

If any of the values in the table are null, null is returned. If the table is empty,
then the max function returns the default component, if any, otherwise null. The
max function returns an atomic value whose type is the same as the attribute in
its table operand.

When max is applied to a table whose single column is of type text or string, then
it returns the value which is the last in lexicographic order (actually ASCII
order).
Statement:

Determine the surname which is
last in lexicographic order.
#
max(contacts[surname]) ;

Output:

'Rustings'

Sum

The sum function can be applied to any single attribute table. The attribute must
be atomic and not a tuple or nested table. The column of this table must be of a
numeric type (integer or float).

If any of the values in the table are null, null is returned. If the table is empty,
then the sum function returns the default component, if any, otherwise 0. The
sum function returns an atomic value whose type is the same as the attribute in
its table operand.
Statement:

Determine the sum of home loans.
#
sum
(

loans[amount]
where exists

(
category_tab
where category contains 'home'

)
);

Output:

105000.000000

4-32 Query Language

KE Texpress Texql Guide

Avg

The avg function can be applied to any single attribute table. The attribute must
be atomic and not a tuple or nested table.

The column of this table must be of a numeric type (integer or float). If any of
the values in the table are null, null is returned. If the table is empty, then the avg
function returns the default component, if any, otherwise null. The atomic value
returned by avg is always a floating point number.
Statement:

Create a temporary table of the loans columns plus
an additional column set to the average loan amount.
Then project from this table, the amount and the
average amount.
#
select amount, "AVG"
from
(

select all,
avg
(

loans[amount]
)

from loans as tmp
);

Output:

(65000.00,30000.000000)
(40000.00,30000.000000)
(5000.00,30000.000000)
(10000.00,30000.000000)

Counting Tuples

The count function can be applied to any table of any structure. The table may
contain nested tables or null values. The count function always returns an integer
value which is the number of tuples in the table. If an empty table is passed to
this function, then zero is returned.
Statement:

Determine the number of loans
exceeding the average loan amount.
#
count
(

loans[amount] as tmp
where tmp.amount > avg(loans[amount])

);

Output:

2

Query Language 4-33

KE Texpress Texql Guide

Forming Tuples from Tables
The function, totuple, makes the syntactic conversion of a table containing one
tuple into the type, tuple. If the table does not contain exactly one tuple, this
function returns an error. This function is necessary when passing the result of a
SFW expression to a function, such as numwords (see Section 4.17), which
operates on atomic values only.
Statement:

Output the amount of loan number 3
plus an extra $5,000.
#
totuple
(

loans[amount]
where loanno = 3

) + 5000 ;

Output:

10000.000000

Tuple Numbers
The variable, rownum, returns the tuple number of the current tuple. This is the
integer value representing the number of the tuple within the table or nested
table. Tuples are numbered commencing from one.
Statement:

Select the rownum and amount of
tuples in the loans table from
row number 2 onwards.
#
select rownum, amount
from loans
where rownum > 1;

Output:

(2,40000.00)
(3,5000.00)
(4,10000.00)

The rownum function also returns an attribute identifier of rownum.

4-34 Query Language

KE Texpress Texql Guide

Tuple Access
A single tuple can be selected from a table by adding {number} after the table
reference. This is called tuple access. If the specified tuple does not exist in the
table, a tuple of null values is returned.
Statement:

Access the fourth tuple of the loantypes table.
#
loantypes{4};

Output:

(4,14.25,'Car','john',(15,06,1993),(11,50))

Statement:

Access the name and second mailing list
entry of all contacts.
#
contacts[surname, maillist_tab{2}];

Output:

('Citizen',['Boating'])
('Johnson',['Travel'])
('Rustings',[])

A sub-range of tuples can be accessed from a table by adding the sequence:

{num1 to num2}

after the table reference. This forms a table from rows num1 through to num2 or
the number of rows in the table, whichever is smaller.
Statement:

Access the surname and first two
category entries for each loan.
#
loans[surname, category_tab{1 to 2}];

Output:

('Citizen',['First home purchase'])
('Citizen',,['Extension to family home'|'Car purchase'])
('Johnson',['Overseas Travel'])
('Rustings',['Overdraft'])

Query Language 4-35

KE Texpress Texql Guide

Table Expressions
There are several operators available for manipulating tables. Each of these
return results which are also tables.

Times

The operator, times, returns the cartesian product of its operands, each of
which must be tables. The resultant structure is a table containing two tuple
attributes.

Join

The operator, join, implements a natural join. A natural join performs the
cartesian product of its table operands, selecting only those tuples where all
attributes with the same identifiers in the different tables have the same values,
and then removes duplicate attributes.

Unlike the times operator, join does not form tuples in the result.
Statement:

Without using the references, perform a
natural join of the loans, contacts and
loantypes tables and then select the
amount, surname and interest rate from
the resulting table.
#
select amount, surname, interest
from
(

(
loans[loanno, contno.contno,

typeno.loanno as lno, amount]
)
join
(

contacts[contno, surname]
)
join
(

loantypes[loanno as lno, interest]
)

);

Output:

(65000.00,'Citizen',9.50)
(40000.00,'Citizen',16.50)
(5000.00,'Johnson',17.00)
(10000.00,'Rustings',18.00)

4-36 Query Language

KE Texpress Texql Guide

Union

The union operator returns a table of the union of all tuples in each of its
operands i.e. it returns any tuples which appear in either of its operands. Each
operand must be of type table. Duplicate tuples are removed. If union all is used
then duplicate tuples are not removed.

The table operands must be union compatible, which means that they must have
the same attribute types and the attributes must appear in the same order. This
must also be true recursively for any nested attributes.
Statement:

Find all loans of more than $5,000
together with all travel loans.
#
(

loans
where amount > 5000

)
union all
(

loans
where exists

(
category_tab
where category contains 'travel

)
);

Output:

(1,(1),(1),65000.00,120,['First home purchase'])
(2,(1),(6),40000.00,60,['Extension to family home'|'Car
purchase'| 'Overseas Travel'])
(4,(3),(7),10000.00,36,['Overdraft'])
(2,(1),(6),40000.00,60,['Extension to family home'|'Car
purchase'| 'Overseas Travel'])
(3,(2),(8),5000.00,12,['Overseas Travel'])

Intersect

The intersect operator returns the intersection of all of the tuples in its operands,
i.e. it only returns tuples that appear in both of the operands. The two operands
must be union compatible tables.

If union all is specified, then the number of copies of any specific row value in
the result is equal to the lesser number of such copies in the table indicated by
the left operand and the number in the table indicated by the right operand.

Query Language 4-37

KE Texpress Texql Guide

Except

The operator, except, returns the set difference of its two operands, which must
be union compatible tables, i.e. it returns all tuples that appear in the first
operand except those that appear in the second. Duplicate tuples are removed.

If except all is specified, then the number of copies of any specific row value in
the result is equal to the number of such copies in the table indicated by the left
operand, less the number in the table indicated by the right operand

Nesting Data into Tables

The operator, nest, creates a tuple structure incorporating a nested table. It
groups tuples with common values in unnested attributes to form a single new
tuple.
Statement:

Nest loans on the contact number,
creating a new nested table of loan details.
#
nest
(

loans[contno, typeno, amount, term]
)
on contno
forming details;

Output:

((1),[((1),65000.00,120) | ((6),40000.00,60)])
((2),[((8),5000.00,12)])
((3),[((7),10000.00,36)])

The new table created by this example contains the loan details of each loan
registered to a contact nested under the nested table called details.

A more complicated way of expressing the same query is as follows:

Nest loans on the contact number,
creating a new nested table of loan details.
#
distinct
(

select contno,
(

select typeno, amount, term
from loans as details
where lns.contno.contno =
details.contno.contno

)
from loans as lns

);

4-38 Query Language

KE Texpress Texql Guide

Note, however, that the order of the tuples in the resulting table may be different
from that returned by the first nesting example.

Unnesting Tables

The operator, unnest, can be used to collapse a single, nested table within a
table. For each tuple in the nested table being collapsed, a new tuple is created
containing the attributes of the nested table together with a copy of all of the
other attributes in the table.

The keyword, unnest, can be preceded by one of the keywords, inner or outer,
specifying the type of unnest to be performed. By default an unnest is an inner
unnest operation..

If the nested table being collapsed does not contain any tuples, then an inner
unnest does not produce a tuple, whereas an outer unnest produces a single tuple
with the nested table attributes being assigned null values.
Statement:

Unnest the category_tab nested table
from the loans table and then select
the amount and category columns.
#
select category, amount
from
(

unnest loans
on category_tab

);

Output:

('First home purchase',65000.00)
('Extension to family home',40000.00)
('Car purchase',40000.00)
('Overseas Travel',40000.00)
('Overseas Travel',5000.00)
('Overdraft',10000.00)

The operator, , can be used as an abbreviation for the inner unnest operator. So
the above query could have been expressed as follows:

Unnest the category_tab nested table
from the loans table and then select
the amount and category columns.
#
select category, amount
from loans:category_tab;

Query Language 4-39

KE Texpress Texql Guide

Removing Duplicate Tuples

Similar to SQL, duplicate tuples are not removed from tables by Texql queries.
For example, the following query:

loans[surname] ;

includes duplicate surnames, where a contact is registered as having more than
one loan.

Duplicate tuples can be removed from a table using the operator, distinct. This
operator takes a table as an argument and removes any duplicate.

Two tuples are considered to be duplicates if all atomic values are equal and any
nested tables contain the same set of tuples where the ordering of tuples is
significant.

The table returned has the same structure as the sub-expression but may contain
less tuples. The ordering of tuples in the returned table is not guaranteed.
Statement:

distinct
(

(
loans
where amount > 5000

)
union
(

loans
where exists

(
category_tab
where category
contains 'travel'

)
)

);

Output:

(2,(1),(6),40000.00,60,['Extension to family home'|'Car
purchase'| 'Overseas Travel'])
(1,(1),(1),65000.00,120,['First home purchase'])
(4,(3),(7),10000.00,36,['Overdraft'])
(3,(2),(8),5000.00,12,['Overseas Travel'])

4-40 Query Language

KE Texpress Texql Guide

Sorting Tuples

The operator, order, sorts the tuples returned by a table sub-expression using
one or more attributes. The sort attributes can be atomic attributes, tuples or
nested tables, or selected attributes from tuples or nested tables. The dot
notation for extracting attributes from tuples can be used.

The sorting direction, asc (ascending) or desc (descending), can also be specified
with the default direction being ascending.

Nested tables are compared by comparing the first tuple, then the second and so
on until the selected attribute or attributes differ in some way. An empty table is
considered less than any other table.
Statement:

Order loans by descending order of
surname, first name and then
ascending order of amount.
#
order
(

select surname, firstnam, amount
from loans

)
on surname desc,

firstnam desc,
amount;

Output:

('Rustings','Peter',10000.00)
('Johnson','Jennifer',5000.00)
('Citizen','John',40000.00)
('Citizen','John',65000.00)

Query Language 4-41

KE Texpress Texql Guide

Miscellaneous Text Functions
Texql provides several text functions which can be useful when processing
textual data. The description of each of these functions along with an example
follows. Some examples use the following query as a sub-query.
Statement:

Query used as a sub-query in
miscellaneous text function examples.
#
contacts{1}[remarks];

Output:

('John presented well in his interview, confirming all
reports on him. His previous credit rating information is
excellent, reflecting a stable person with recognisable
commitment to repaying loans on time. John is also middle
class making him a good target for personal loans. His
particular interest in sailing makes him a good candidate
for the boating push we will soon commence.')

Stem

The function stem(word), returns the stem of the word, word.
Statement:

stem('electricity') ;

Output:

'electr'

Statement:

stem(word(totuple(contacts{1}[remarks]), 6));

Output:

'confirm'

4-42 Query Language

KE Texpress Texql Guide

Phonetic

The function phonetic(word) returns the phonetic encoding of the sound of the
word, word.
Statement:

phonetic('electricity') ;

Output:

'e423'

Statement:

phonetic(word(totuple(contacts{1}[remarks]), 6));

Output:

'c516'

Numwords

The function numwords(str) returns the number of words, ignoring noise words,
in the string, str.
Statement:

numwords('The quick brown fox jumped over the lazy dog') ;

Output:

7

Statement:

numwords(totuple(contacts{1}[remarks])) ;

Output:

48

Query Language 4-43

KE Texpress Texql Guide

Word

The function word(str, num) selects the word number, num, from the string, str,
ignoring noise words.
Statement:

word('The quick brown fox jumped over the lazy dog', 3) ;

Output:

'fox'

Statement:

word(totuple(contacts{1}[remarks]), 6);

Output:

'confirming'

Words

The function words(str) returns as a list, the words in the string, str, ignoring
noise words.
Statement:

words('The quick brown fox jumped over the lazy dog') ;

Output:

('quick')
('brown')
('fox')
('jumped')
('over')
('lazy')
('dog')

Data Manipulation Language 5-1

KE Texpress Texql Guide

Chapter 5

Data Manipulation Language

Insert ... 5-3
Update... 5-5
Delete.. 5-7

5-2 Data Manipulation Language

KE Texpress Texql Guide

Overview
This chapter describes the data manipulation facilities provided by Texql. These
facilities enable the creation, modification and deletion of records in Texpress
databases through the Texql interpreter.

Data Manipulation Language 5-3

KE Texpress Texql Guide

Insert
The Texql command, insert, is used to add new tuples to a table. When used in
conjunction with the update command, it can also be used to insert new tuples
into nested tables. The simplest form of the command is:

insert into table
values
[values ...] ;

where values contains a value for every column in the table. The use of this
format is not generally recommended as it is not protected from changes to a
table definition.

A more appropriate form of the insert command is:

insert into table[columns]
values
[values ...] ;

In this form, values must be supplied only for the columns listed. This is a more
robust form of the insert command.

Multiple insertions can be performed with the one insert statement by defining
multiple tuples inside the values square brackets. Multiple tuples are separated by
|.
Statement:

Insert a new loan category into the loantypes table.
#
insert into loantypes[loanno, interest, loanname]
values
[
 9, 9.0, 'Bank Transfer' |
 10, 15, 'Stock Market Investment'
];

Output:

Inserted 2 tuples

5-4 Data Manipulation Language

KE Texpress Texql Guide

Insertions into tables which contain nested tables simply include one or more
tuples in a nested tuple construct. These nested tuples are separated by | and the
nested table surrounded by square brackets, [and].
Statement:

Insert a new contact into the contacts table.
Only a selection of the field values are known.
#
Note that, for readability, the remarks data
is broken into a series of text constants
that are concatenated using '+'.
#
insert into contacts[contno, title, surname,

country, town, rating, exposure,
maillist_tab, remarks]

values
[
 4, 'Ms', 'Thompson', 'VIC', 'Burwood', 'B', 40000,
 ['Boating' | 'Home improvement' | 'Travel'],
 'Little known information but a good prospect with ' +
 'high earning potential. Should be good for at ' +
 'least up to $40,000. On a home loan, we should ' +
 'accept up to $100,000 on an appropriate dwelling.'
];

Output:

Inserted 1 tuple

The result of any query can also be used as data for an insertion.
Statement:

Insert a new tuple into the loans database by
selecting an existing tuple and copying everything
except the unique identifier, loanno.
This is assigned explicitly.
#
insert into loans
values (

select 5, all but loanno
from loans
where contno.surname = 'johnson'

);

Output:

Inserted 1 tuple

Data Manipulation Language 5-5

KE Texpress Texql Guide

Update
The update command is used to update tuples or nested tuples in a table.
Update commands can be used to assign a new value to an atomic field, or
modify nested tables using a nested Texql command. Thus an update command
can contain nested insert, update or delete commands.

The set clauses are evaluated in the order of appearance (from left to right).
Statement:

Update the exposure field of all contact rows
#
update contacts
set exposure = 5000;

Output:

Updated 4 tuples

A where clause generally accompanies an update command to restrict the tuples
which are updated.
Statement:

Replace all occurrences of 'Boating' with
'Yachting' for all records, regardless of
where it appears in the nested table.
#
update contacts
set (

update maillist_tab
set maillist = 'Yachting'
where maillist = 'boating'

)
where exists

(
maillist_tab
where maillist = 'boating'

);

Output:

Updated 2 tuples

5-6 Data Manipulation Language

KE Texpress Texql Guide

When a tuple is being inserted into a nested table it is possible to specify whether
it is to be inserted before or after the first tuple in the nested table meeting a
"where"-style condition.
Statement:

Update a record by changing the first name,
adding a new mailing list entry and updating another.
#
update contacts
set firstnam = 'Jack',

(
insert into maillist_tab
values ['Travel']
after maillist = 'Home improvement'

),
(

update maillist_tab
set maillist = 'First home buyer'
where maillist = 'Home improvement'

)
where surname contains '@citason' ;

Output:

Updated 1 tuple

Data Manipulation Language 5-7

KE Texpress Texql Guide

Delete
The delete statement removes matching tuples from a table or nested table. As
described above, a delete command can be used on tuples in nested tables by
nesting the command in an update statement.
Statement:

Delete all loans with amounts not more than $5,000.
#
delete from loans
where amount <= 5000;

Output:

Deleted 2 tuples

The delete command can be used to delete all tuples in a table.
Statement:

Delete all loans from the loans table.
#
delete from loans;

Output:

Deleted 3 tuples

However this does not remove the table. A table can only be removed using the
KE Texpress texdelete command.

Example Tables and D ata A-1

KE Texpress Texql Guide

Appendix A

Example Tables and Data

Contacts ... A-2
Loan Types... A-4
Loans.. A-5

A-2 Example Tables and Data

KE Texpress Texql Guide

Contacts

Statement:

describe contacts;

Output:

contacts[
contno integer,
title text,
firstnam text,
surname text,
position text
company text
address text
country text,
town text,
postcode text
phone text
rating text
exposure integer,
maillist_tab[

maillist text
],
modby text,
modon(

modon_1 integer,
modon_2 integer,
modon_3 integer

),
modat(

modat_1 integer,
modat_2 integer

),
remarks text

];

Example Tables and D ata A-3

KE Texpress Texql Guide

Statement:

contacts;

Output:

(1,'Mr','John','Citizen','Design Engineer','Acme
Electronics Pty. Ltd.','123 Smith Street',
'VIC','GEELONG','3220','(053) 27 1645 (053) 27
8787','A+',150000,['Home improvement'|'Boating'],
'john',(15,06,1993),(14,06),
'John presented well in his interview, confirming all
reports on him. His previous credit rating information is
excellent, reflecting a stable person with recognizable
commitment to repaying loans on time. John is also middle
class making him a good target for personal loans. His
particular interest in sailing makes him a good candidate
for the boating push we will soon commence.')
(2,'Ms','Jennifer','Johnson','Marketing Officer','Channel
Ten','34 James Court', 'VIC','NUNAWADING','3131','859 2717
844 7891','UNK',80000,['Home buyer'|'Travel'],
'john',(15,06,1993),(14,11),
'Jennifer is a good loan prospect but with no previous
credit history (apart from a good bankcard record). She has
an excellent position, albeit with a difficult job ahead of
her, and so we can expect her to be able to service loans.
However, current thinking prefers to minimize our exposure
until there is more track record.')
(3,'Mr','Peter','Rustings','Director',
'Rustings Pty. Ltd.','P.O. Box 146',
'VIC','MELBOURNE','3001','662 2617 662 2617 662
2749','C',10000,['Better finance'],
'john',(15,06,1993),(14,15),
'Peter has a poor credit history and appears to be a
sizeable risk. We must ensure that all collateral offered
actually exists and is owned by him and generally keep
minimal exposure. However, we should try to keep his
business in case he wins Tattslotto.')

A-4 Example Tables and Data

KE Texpress Texql Guide

Loan Types

Statement:

describe loantypes;

Output:

loantypes[
loanno integer,
interest float,
loanname text,
modby text,
modon(

modon_1 integer,
modon_2 integer,
modon_3 integer

),
modat(

modat_1 integer,
modat_2 integer

)
];

Statement:

loantypes;

Output:

(1,9.50,'First home buyer','john',(15,06,1993),(11,50))
(2,12.90,'Investment property','john',(15,06,1993),(11,50))
(3,15.50,'Personal loan','john',(15,06,1993),(11,50))
(4,14.25,'Car','john',(15,06,1993),(11,50))
(5,10.75,'Home improvement','john',(15,06,1993),(11,51))
(6,16.50,'General loan','john',(15,06,1993),(11,51))
(7,18.00,'Overdraft','john',(15,06,1993),(11,51))
(8,17.00,'Travel','john',(15,06,1993),(14,19))

Example Tables and D ata A-5

KE Texpress Texql Guide

Loans

Statement:

describe loans;

Output:

loans[
loanno integer,
contno(

contno integer
) ref contacts,
typeno(

loanno integer
) ref loantypes,
amount float,
term integer,
category_tab[

category text
]

];

Statement:

loans;

Output:

(1,(1),(1),65000.00,120,['First home purchase'])
(2,(1),(6),40000.00,60,['Extension to family home'|'Car
purchase'|'Overseas Travel'])
(3,(2),(8),5000.00,12,['Overseas Travel'])
(4,(3),(7),10000.00,36,['Overdraft'])

Error and Status Codes B-1

KE Texpress Texql Guide

Appendix B

Error and Status Codes

Error Codes...B-2
Status Codes..B-5

B-2 Error and Status Codes

KE Texpress Texql Guide

Error Codes

001 "Internal error: %s"
002 "Expression failed"
003 "Link to REF failed"
004 "Validation failed"
005 "Permission denied"
006 "Table is readonly"
007 "Can't find \"%s\" table"
008 "You are not a registered user of \"%s\" table"
009 "Database \"%s\" not initialised"
010
011 "Database startup failed"
012 "Failed to read table"
013
014
015 "Cannot lock data file"
016 "Cannot lock duplicate data file"
017 "Cursor is not a query cursor"
018 "End of file"
019 "No more cursors available"
020 "Bad cursor"
021 "Can't determine user identity"
022 "Query does not return an atomic value"
023 "Column \"%s\" is of incorrect type "
024 "Unknown column name \"%s\""
025 "Atomic column %s has unknown (bad) type"
026 "Describe cursor cannot access data"
027 "Operation is not permitted on a nested cursor"
028 "Cursor is not a reference to KE Texpress database"
029 "Bad item name"
030 "Bad field number"
031 "Column operation performed before row has been accessed"
032 "Nested cursor operation performed before row has been accessed"
033 "The API cannot be run by the superuser"
034 "Permission denied"
035 "Operation interrupted by front-end"
036 "Column \"%s\" not a base KE Texpress table"
037 "Row lock failed"
038 "Row unlock failed"
039 "Row status failed"
040 "Merge arguments refer to different base tables"
041 "Merge arguments table paths differ"
042 "Column \"%s\" is read only"
043 "Sort of cursor failed"

Error and Status Codes B-3

KE Texpress Texql Guide

044 "Incompatible versions of client library and KE Texpress server"
045 "Function not yet implemented in KE Texpress server"
046 "Reference column not permitted"
047 "New row has not been saved or discarded"
048 "Table does not have a primary key"
049 "Failed to assign primary key"
050 "Badly formed primary key"
051 "Duplicate primary key"
052 "Licence error"

200 "BUT caused all columns to be removed"
201 "Unable to resolve BUT identifier"
202 "Can't evaluate expression to atomic value"
203 "Illegal NULL value in expression evaluation"
204 "INSERT BEFORE/AFTER not permitted on base table"
205 "TOTUPLE cannot return row from empty table"
206 "TOTUPLE can only return a row from a table that has only one row"
207 "Too many tables to join on"
208 "Unknown table in PRESERVE clause"
209 ".ident can only be applied to a tuple"
210 ".%s not a column of the tuple"
211 "Unable to resolve \"%s\""
212 "Attribute specification too complex for GROUP"
213 "GROUP operator not being applied to table"
214 "Tuple projection not from tuple expression"
215 "UPDATE only works on tuples or tables"
216 "FROM line not a table expression"
217 "References too complex to follow"
218 "Identifier nesting too deep"
219 "Column number out of range"
220 "Ambiguous identifier"
221 "HAS on non table column"
222 "STEM makes no sense on incomplete word"
223 "PHONETIC makes no sense on incomplete word"
224 "A syntax error has occurred while parsing text"
225 "BUT must come last on SELECT line"
226 "Text constant must have at least one character (otherwise use NULL)"
227 "Incompatible tuples in constant table"
228 "AS expression is type incompatible"
229 "Left hand side of '=' must be an identifier"
230 "Identifier \"%s\" recursively defined"
231 "Arithmetic operator can only be applied to atomic types"
232 "Can't use arithmetic operator on type %s"
233 "Can only use IS NULL operator on atomic types"
234 "EXISTS can only be applied to table expressions"

B-4 Error and Status Codes

KE Texpress Texql Guide

235 "Illegal ROWNUM operator"
236 "Incorrect number of arguments to %s"
237 "%s can only be applied to TEXT values"
238 "COUNT can only be applied to tables"
239 "IFNULL can only be applied to atomic values"
240 "Arguments of IFNULL type incompatible"
241 "Arguments of %s must be atomic"
242 "First argument of %s must be of type TEXT"
243 "Second argument of %s must be of type INTEGER"
244 "%s requires a table that has a single column of atomic values"
245 "DEFAULT value of different type to table column for %s"
246 "%s requires a single numeric column table"
247 "DEFAULT value for %s is not an atomic value"
248 "DEFAULT value must numeric for %s"
249 "%s requires a table expression"
250 "Can only %s on boolean values"
251 "Can't use boolean operator on type %s"
252 "Can only %s on atomic values"
253 "Two sides of %s operator not of compatible types"
254 "Bad left hand side of LIKE"
255 "Right hand side of LIKE must be of type TEXT"
256 "CONTAINS used only on TEXT columns"
257 "Right hand operand of CONTAINS must be a TEXT constant"
258 "Left hand operand of HAS must be a single atomic valued column table"
259 "Right hand operand of HAS must be an atomic value"
260 "%s left and right hand operands are type incompatible"
261 "Left hand operand of IN must be an atomic value"
262 "Right hand operand of IN must be a single atomic valued column table"
263 "%s requires table expressions as operands"
264 "Can only apply BETWEEN to atomic values"
265 "Incompatible types in BETWEEN clause"
266 "WHERE not from a table"
267 "WHERE clause must return a boolean value"
268 "SELECT-FROM-WHERE expression not from a table"
269 "Tuple projection not from a tuple"
270 ".* only permitted on SELECT line"
271 ".* can only be applied to tuples"
272 "%s expression not from a table"
273 "%s must have boolean condition"
274 "%s must return a boolean value"
275 "Not a COLUMN to GROUP on"
276 "Illegal GROUP identifier"
277 "Can only GROUP tables"
278 "Can only %s tables"
279 "Can only %s nested tables"

Error and Status Codes B-5

KE Texpress Texql Guide

280 "Can only insert into tables"
281 "Tuple structure different to table structure"
282 "Can only modify tables with %s"
283 "Incompatible types for SET"
284 "Range value must be of type INTEGER"
285 "Operand of [] must be of type TABLE"
286 "Referenced table no longer exists"
287 "ORDER cannot be applied to atomic values"
288 "ORDER can only be applied to table values"
289 "Badly formed identifier"
290 "PRESERVE without WHERE clause"
291 "Illegal PRESERVE"
292 "Syntax error"
293 "String not terminated at end of line"
294 "Division by zero"
295 "Modulus by zero"
296
297
298 "Database is full"
299 "Server panic"

Status Codes

150 "Query completed"
151 "Describe completed"
152 "Inserted %d tuples"
153 "Updated %d tuples"
154 "Deleted %d tuples"

Index i

KE Texpress Texql Guide

Index

$
$, 4-21

%
%, 4-29

*
*, 4-20, 4-29

+
+, 4-28, 4-29

-
-, 4-28, 4-29

/
/, 4-29

<
<, 4-16, 4-20
<=, 4-16, 4-20
<>, 4-16, 4-19

=
=, 4-16, 4-19

>
>, 4-16, 4-20
>=, 4-16, 4-20

?
?, 4-20

[
[^str], 4-20
[str], 4-20

^
^, 4-21
^str, 4-21

A
Addition, 4-29
after, 1-7, 5-6
alias, 3-10
aliases, 4-11
all, 1-7, 4-5
and, 1-7, 4-14
Arithmetic operators, 1-6
arithmetic operators, 4-28
as, 1-7, 3-10, 4-8
asc, 1-7, 4-40
ascending, 4-40
Atomic constants, 3-8
atomic value, 1-3
atomic values, 4-5
avg, 1-7, 4-30, 4-32

ii Index

KE Texpress Texql Guide

B
bank loan registration, 1-8
before, 1-7, 5-6
between, 1-7, 4-18, 4-20
between operator, 4-18
binary arithmetic operators, 4-29
boolean, 1-7, 3-4
boolean expression, 4-10
boolean operators, 4-14
but, 1-7, 4-6

C
cartesian product, 4-9, 4-35
collapse, 4-38
column, 1-3, 1-7, 3-9
Column selection, 1-6
command history, 2-8, 2-9
command line based interpreter, 2-2
Comments, 2-6
Comments indicator, 1-6
complex object support, 1-2
concatenation, 4-29
contacts, 1-8
contains, 1-7
contains operator, 4-21
count, 1-7, 4-32
creation, 5-2

D
data manipulation, 1-2, 5-2
dates, 3-4
default, 1-7, 4-30
default component, 4-30, 4-31, 4-32
delete, 1-7, 2-4, 5-7
deletion, 5-2
desc, 1-7, 4-40
descending, 4-40
describe, 1-7, 2-10
distinct, 1-7, 4-39
Division, 4-29
dot notation, 4-40

duplicate attributes, 4-35
Duplicate tuples, 4-36, 4-37
duplicate tuples, 4-39

E
e, 1-7, 2-8
Echo commands, 2-3
edit, 1-7, 2-8
edit a command, 2-8
equality, 4-24
equality operators, 4-19
error, 2-3
error messages, 2-4
Exact word, 1-6
example databases, 1-3
except, 1-7, 4-37
exists, 1-7, 4-24
exit, 1-7, 2-13
explicit join, 4-9
extract operator, 3-5, 4-12, 4-13

F
false, 1-7, 3-4, 4-10
float, 1-7, 3-4
Fold case, 1-6
forming, 1-7
from, 1-7, 4-4, 4-9
functional notation, 3-10, 4-4, 4-14

G
grouping, 1-6

H
h, 1-7, 2-8
has, 1-7, 4-26
has operator, 4-27
help, 1-7, 2-7
help command, 2-7
history, 1-7, 2-3, 2-8

Index iii

KE Texpress Texql Guide

history command, 2-8
history substitution, 2-8

I
identifier, 3-8
identifier name, 3-8
Identiifier delimiter, 1-6
ideographic character, 4-21
ifnull, 1-7, 4-17
implicit join, 1-5
implicit joins, 3-7, 4-8
in, 1-7, 4-26
in operator, 4-26
inequality, 4-24
inner, 1-7
inner unnest, 4-7, 4-38
Inner unnest operator, 1-6
insert, 1-7, 2-4, 5-3
integer, 1-7, 3-4
interactive sessions, 2-6
intersect, 1-7
intersect operator, 4-36
into, 1-7
is, 1-7
is not null, 4-17
is null, 4-17
item, 1-3

J
join, 1-7, 4-35
join condition, 4-9
join query, 4-9

K
KE Texpress Information Management
System, 1-2
Key, 1-3, 3-5
key, 1-7
keyboard interrupt, 2-4
keyboard interrupts, 2-4

L
latitude, 3-4
lexicographic order, 4-30, 4-31
library, 1-3
library items, 3-5
like, 1-7
like operator, 4-20
linked Key item, 3-7
linked Keys, 1-5
list, 1-7, 2-11
loans, 1-8
loantypes, 1-8
Logical, 1-6
longitude, 3-4

M
max, 1-7, 4-30, 4-31
min, 1-7, 4-30
minus, 1-7
modification, 5-2
Modulus, 4-29
multi-field item, 1-3
Multi-valued fields, 1-2
Multiple tuple separator, 1-6
Multiplication, 4-29

N
natural join, 4-35
nest, 1-7, 4-37
nested table, 1-3, 3-7, 4-24, 4-37, 4-38
Nested tables, 1-2
nested tables, 4-5, 4-37, 5-3, 5-4
nested tuple, 1-3
nested tuple structures, 4-12
noise words, 4-42
non-interactive sessions, 2-6
Not, 1-6
not, 1-7, 4-14
null, 1-7, 3-5, 4-14, 4-18, 4-20
null value, 3-5, 4-17
numeric operands, 4-18

iv Index

KE Texpress Texql Guide

numwords, 1-7, 4-33, 4-42

O
object-oriented database, 1-2
of, 1-7
on, 1-7
or, 1-7, 4-14
order, 1-7, 4-40
orthogonality, 4-8
outer, 1-7
outer unnest, 4-7, 4-38

P
parts of words, 4-21
Pattern matching, 1-6
pattern matching, 4-20
Phonetic, 1-6
phonetic, 1-7, 4-42
phonetic retrieval, 1-4
Phrase, 1-6
phrase retrieval, 1-4
phrases, 4-21
preferred editor, 2-8
preserve, 1-7
Print error/status codes, 2-3
projected attributes, 4-4
projection, 4-5
projection of attributes, 3-6
prompt, 2-4

Q
query language, 1-2, 4-3
quit, 1-7, 2-13

R
read, 1-7, 2-12
Read only mode, 2-3
recursive syntax, 4-8
ref, 1-7

reference attribute, 1-5, 3-7, 4-7
reference attribute identifier, 4-8
Reference attributes, 4-8
reference attributes, 4-12
references, 1-2, 1-5
References to foreign objects, 1-2
relational database systems, 1-3
relational operators, 1-6, 4-16, 4-18, 4-20
Resolution of identifiers, 4-12
restore, 1-7, 2-9
row, 1-3
Row number selection, 1-6
rownum, 1-7, 4-33

S
save, 1-7, 2-9
scoping rules, 4-3, 4-12
select, 1-7, 4-4, 4-5
select component, 4-4
select-from-where, 4-3
Separator, 1-6
set, 1-7
set clauses, 5-5
sort, 4-40
sorting direction, 4-40
sound, 4-42
sounds, 4-21
SQL, 1-2, 4-20
Statement delimiter, 1-6
Statement Terminator, 2-7
status message, 2-4
status messages, 2-3, 2-4
stem, 1-7, 4-41
stemming, 1-4
stems, 4-21
str, 4-21
string, 3-3
subrange of tuples, 4-34
subset, 1-7, 4-25
subset of, 4-25
Subtraction, 4-29
sum, 1-7, 4-30, 4-31
superset, 1-7, 4-25
superset of, 4-25

Index v

KE Texpress Texql Guide

T
table, 1-3, 1-7, 3-7, 4-24
table name, 2-10
table names, 2-5
Temporary table, 1-6
TERM environment variable, 2-3
terminal description, 2-3
Terminal type, 2-3
terminology, 1-3
termtype, 2-3
texdelete, 5-7
Texql, 1-2
texql, 2-3
Texql prompt, 2-3
Text, 1-2
text, 1-7, 3-3
text attributes, 1-2
Text constant begin and end delimiter, 1-6
text functions, 4-41
Text output delimiter, 2-5
text retrieval, 1-4
time, 3-4
times, 1-7, 4-35
tlsdb, 2-11
to, 1-7
totuple, 1-7, 4-33
true, 1-7, 3-4, 4-10
tuple, 1-3, 3-5, 3-7, 4-24, 4-33
tuple access, 4-34
Tuple definition, 1-6
Tuple projection, 3-6
Tuples, 1-2
tuples, 4-5
type compatible, 3-8, 4-24

U
unary minus, 4-28
unary plus, 4-28
union, 1-7
union compatible, 4-36, 4-37
union operator, 4-36
unknown value, 4-17
unnest, 1-7, 4-38

update, 1-7, 2-4, 5-3, 5-5
usage message, 2-3
user interface, 2-2

V
values, 1-8

W
where, 1-8, 4-4, 4-10
where clause, 5-5
where component, 4-4, 4-9
with, 1-8, 4-11
with clause, 4-11
word, 1-8, 4-43
word based queries, 1-4
Word stemming, 1-6
word-break characters, 4-21
words, 1-8, 3-3, 4-21, 4-43
write, 1-8, 2-13

