
 Page 1

EMu Documentation

Scheduled Operations
Document Version 1.1

EMu version 4.3

Contents

S E C T I O N 1 Overview 1

S E C T I O N 2 How to schedule an operation 3

The Operation tab 3
Delete Operation: the Delete tab 6
Image Import Operation: the Image Import tab 8
Merge Operation: the Merge tab 10

Examples 12
Scenario 1 12
Scenario 2 14

S E C T I O N 3 Viewing Operation Results 17

View Result Files 17
Save all Result Files 18
Save a Result File 18

S E C T I O N 4 How to create an additional type of Scheduled
Operation 19

Storage of Scheduled Operations scripts 20
Invoking a scheduled operation 22
Accessing information from a Scheduled Operations record 23
An example operation 25
Useful functions that may be called from within an operation 30

OpenLogFile 31
FileLog 31
GetStartPosition 32
AddToProcessed 32
GetAttachmentFields 33

S E C T I O N 5 emuoperations 35

Using emuoperations 35
Configuring emuoperations 36

Index 37

Overview

Scheduled Operations

1

Overview

 In order to use the Scheduled Operations facility, a user must have (or
be a member of a group that has) Table Access to the Operations
module (eoperations) and the daInsert operations permission.

The Scheduled Operations facility introduced with EMu 4.3 enables the scheduling
of operations to be run immediately or at a specified date and time. Operations are
scheduled in the Scheduled Operations module, which is accessed by selecting

 in the Command Centre:

With the Scheduled Operations facility it is possible to define:

 The type of operation to run

 The module to apply the operation to

 A time to commence the operation

 People to notify when the operation is complete

A scheduled operation is defined and stored as a record in the Scheduled Operations
module.

When a scheduled operation is run, any files created during the operation are listed
in the Result Files table on the Operation tab. Result files can be viewed and saved.

S E C T I O N 1

Overview

2

Scheduled Operations

Audit logs are produced for all scheduled operations, allowing suitably authorised
users to search / view the results of all operations performed by all users.

EMu 4.3 supports three types of scheduled operation:

 Merge Records

 Delete Records

 Image Import

 System Administrators may define additional types of Scheduled
Operation as required. See How to create an additional type of
Scheduled Operation (page 19) for details.

How to schedule an operation

Scheduled Operations

3

How to schedule an operation

Scheduling an operation is similar to creating any other record.

The Operation tab

1. Select in the Command Centre to display the Scheduled
Operations module:

2. Enter a descriptive name for the operation in the Name: (Operation) field.

3. Select the type of operation to be performed from the Type: (Operation) drop list.

By default, there are three types of operation to choose from:

 Delete (page 6)

Delete a series of IRNs from a module.

 Image Import (page 8)

Import images from a directory into the Multimedia module.

 Merge (page 10)

Merge one or more records with a Target record in a module.

S E C T I O N 2

How to schedule an operation

4

Scheduled Operations

 System Administrators may define additional operations as required.
See How to create an additional type of Scheduled Operation (page 19)
for details.

4. In the Module: (Operation) field, select the module in which the operation is to
be performed.

 When scheduling an Image Import it is not necessary to specify a
module as emultimedia (the Multimedia module) is implicit to the
operation (images are imported into the emultimedia table).

5. In the Execution group of fields specify the time that the operation will be
executed. There are two options:
 At A Specified Time

With this option selected it is possible to specify a Run Date and Run Time
for the operation to commence its processing. This allows operations to be
run outside of normal business hours or at the weekend.

 A date and time specified here is the earliest that the operation will
be run. The actual time at which an operation is run will depend on
when the emuoperations script is scheduled to run (page 22):
emuoperations is the script used to execute an operation that has
been scheduled in a record in the Schedule Operations module (page
35). When emuoperations is run, it looks for any operations that
were scheduled to run prior to the current date and time and
commences them. Thus, if emuoperations is scheduled to run once
per day, it will commence any operation scheduled to run in the
previous 24 hours (in theory an operation could have been scheduled
to run 23 hours and 59 minutes earlier). If emuoperations is to be
run once per day, it probably makes sense therefore to schedule
operations close to the time at which emuoperations is run.
Alternatively, emuoperations can be run at various times throughout
the day.

 Immediately

With this option the operation will commence as soon as the record is
saved.

How to schedule an operation

Scheduled Operations

5

6. In Notify: (Completion Notification) attach the Parties record for anyone who is

to be notified by email when the scheduled operation has completed.

 Email notifications will only be received by parties added to the Notify:
(Completion Notification) table if their Parties record includes a valid
email address in the Email: (Internet Details) field.

Job Status: (Execution) indicates that the operation is waiting to be run, or that
it has been run and is complete. Note that if an operation terminates
unexpectedly, the status will remain as Run until the operation is restarted and
it completes.

How to schedule an operation

6

Scheduled Operations

Delete Operation: the Delete tab

When Delete is selected from the Type: (Operation) drop list on the Operation tab,
the Delete tab displays:

1. The Module field will list the module from which records will be deleted if a
module was specified (Step 4) on the Operation tab (page 3).

If a module was not selected on the Operation tab, specify in the Module field
which module the records are to be deleted from.

2. In the Records To Delete table add the records that are to be deleted from the
module specified in the Module field.

Records can be added through the attachment or drag and drop process:

2.1. Click beside the Records To Delete table to open the module specified
in the Module field.

2.2. Search the module for the record or records to delete and click Attach

Current Record or Attach Selected Records in the Tool bar
to add the record(s) to the Records To Delete table in the Scheduled
Operations module.

-OR-

2.3. Open the module specified in the Module field and search for the record
or records to be deleted.

2.4. Select the record or records in List View and drag and drop them to the
Records To Delete table in the Scheduled Operations module.

3. Save the record:

How to schedule an operation

Scheduled Operations

7

How to schedule an operation

8

Scheduled Operations

Image Import Operation: the Image Import tab

When Image Import is selected from the Type: (Operation) drop list on the
Operation tab, the Image Import tab displays:

1. In Directory Path To Image Files, enter the pathway to the image files to be
imported.

The path may be a full path:
/home/emu/..

or a relative path:

~/../.. or ../..

2. If required, enter an identifier in the Image Import Identifier field. The value
entered here will be stored in the Import Identifier field on the Admin tab of all
Multimedia records created through this scheduled import.

3. Save the record:

How to schedule an operation

Scheduled Operations

9

How to schedule an operation

10

Scheduled Operations

Merge Operation: the Merge tab

When Merge is selected from the Type: (Operation) drop list on the Operation tab,
the Merge tab displays:

1. The Module field will list the module in which records will be merged if a module
was specified (Step 4) on the Operation tab (page 3).

If a module was not selected on the Operation tab, specify in the Module field in
which module the merge will take place.

2. In the Target Record field add the record that will be the target of the merge (i.e.
the record with which one or more records will be merged).

Records can be added through the attachment or drag and drop process:

2.1. Click beside the Target Record field to open the module specified in
the Module field.

2.2. Search the module for the Target Record and click Attach Current

Record in the Tool bar to add the record to the Target Record field
in the Scheduled Operations module.

-OR-

2.3. Open the module specified in the Module field and search for the Target
Record.

2.4. Drag and drop the Target Record to the Target Record field in the
Scheduled Operations module. There are various ways to do this:

 In List View click the record to drag and drop it on the Target Record
field in the Scheduled Operations module.

 Select the record in List View and drag the Drag Current Record

button in the Tool bar to the Target Record field in the

How to schedule an operation

Scheduled Operations

11

Scheduled Operations module.

 Display the record in Details View and drag the Drag Current

Record button in the Tool bar to the Target Record field in the
Scheduled Operations module.

3. In the Records To Be Merged With Target table add the records that are to be
merged with the Target Record

Records can be added through the attachment or drag and drop process
described earlier (page 6).

4. Save the record:

How to schedule an operation

12

Scheduled Operations

Examples

Scenario 1

A record clean up project is under way. As part of the clean up we wish to merge five
variations of John Smith's Parties record into one. As users are still entering records,
we need to wait until 1 July before we can run the Merge.

Solution

1. Add a Scheduled Operations record with a Type of Merge for eparties, scheduled
to run at 12:10 AM on 1 July:

2. Identify one of the five John Smith Parties records as the Target Record and

attach it to the Target Record field on the Merge tab of the Scheduled Operation
record.

3. Add the remaining four Parties records for John Smith to the Records To Be
Merged With Target table:

How to schedule an operation

Scheduled Operations

13

How to schedule an operation

14

Scheduled Operations

Scenario 2

A large number of digital assets have been donated to your institution. Rather than
load them individually, you would like to have them loaded automatically
commencing immediately.

Solution

1. Add a Scheduled Operations record with a Type of Image Import to commence
loading the digital assets immediately:

 When scheduling an Image Import it is not necessary to specify a
module as emultimedia (the Multimedia module) is implicit to the
operation (images are imported into the emultimedia table).

2. On the Image Import tab specify the directory where the digital assets are stored
and an identifier for the created records:

How to schedule an operation

Scheduled Operations

15

When this record is saved the digital asset import will commence without the need
for any further action from the user, who will be able to continue with their other
work.

Viewing Operation Results

Scheduled Operations

17

Viewing Operation Results

Scheduled operations are run automatically by EMu. For each operation executed a
Results File is created and added to the Result Files table on the Operation tab of the
Scheduled Operations record. The files are stored on the EMu server:

View Result Files

1. Select Results>Launch Viewer>[Result File] in the Menu bar.

-OR-

Select the row in the Result Files table with the file to be viewed & click .

The application / viewer associated with the file extension is invoked to display
the file.

S E C T I O N 3

Viewing Operation Results

18

Scheduled Operations

Save all Result Files

1. Select beside the Result Files table

-OR-

Select Results>Save>All in the Menu bar.

The Browse for Folder dialogue displays.

2. Choose the directory into which all Result Files will be saved.

3. Select .

Save a Result File

1. Select Results>Save>[Result File] in the Menu bar:

The Save As dialogue displays.

2. Choose the location to save the Result File and click .

How to create an additional type of Scheduled Operation

Scheduled Operations

19

How to create an additional type of
Scheduled Operation

EMu provides three Scheduled Operations functions by default:

 Delete

 Image Import

 Merge

In this section we examine how System Administrators can create an additional type
of Scheduled Operation.

S E C T I O N 4

How to create an additional type of Scheduled Operation

20

Scheduled Operations

Storage of Scheduled Operations scripts

Each type of Scheduled Operation (e.g. Delete, Merge, etc.) is defined by a script
which resides under the etc/operations or local/etc/operations directory
on the EMu server.

 When adding a script for an additional type of Scheduled Operation for
your EMu system, place it under local/etc/operations to avoid
the risk of having it overwritten during EMu upgrades.

The script includes the name of the operation which will be listed in the Type:
(Operation) drop list on the Operation tab of the Scheduled Operations module.

When the emuoperations process runs it scans the etc/operations and
local/etc/operations directories to locate the scripts for all types of Scheduled
Operations (files that end with a .pl extension) and registers a name for each type
of operation found. The following example registers the Delete Scheduled
Operation:

sub

Register

{

 my $plugins = shift;

 #

 # We handle the "Delete" method.

 #

 $plugins->{"Delete"} = \&Delete;

}

When a new type of Scheduled Operation is added to EMu, a Lookup List entry needs
to be added to the Operation Type Lookup List. For the above example a Lookup List
record was added to the Operation Type Lookup List with a value of Delete:

How to create an additional type of Scheduled Operation

Scheduled Operations

21

How to create an additional type of Scheduled Operation

22

Scheduled Operations

Invoking a scheduled operation

When scheduling an operation in a record in the Scheduled Operations module, the
operation can be scheduled to commence:
 At A Specified Time

-OR-
 Immediately
If Commence: (Execution) is set to Immediately, the operation will be invoked as
soon the Scheduled Operations record is saved. The operation will commence
running on the EMu server and control returned to the user to continue with their
work.
If Commence: (Execution) is set to At A Specified Time, the operation will be
invoked by the emuoperations script on the EMu server at the appropriate time.

 The execution of each pending operation consumes a licence in the
same way that a user would consume a licence to complete the task.
Similarly to users performing tasks, multiple operations can be run
simultaneously up to the system licence limit.

The emuoperations script is designed to be run from cron with an entry similar to
the following:

30 17 * * * /home/ke/emu/client/bin/emurun emuoperations 2>&1 |

/home/ke/emu/client/bin/emurun emulogger -t "KE EMu Operations" -z

operations

The script is typically run once per day but can be configured to run any number of
times during the day. When the emuoperations script runs it looks for any
operations that were scheduled to run prior to the current date and time and
commences them.

 A date and time specified in a Scheduled Operations record is thus the
earliest that the operation will be run. The actual time at which an
operation is run will depend on when the emuoperations script is
scheduled to run (page 22): emuoperations is the script used to
execute an operation that has been scheduled in a record in the
Schedule Operations module (page 35). When emuoperations is run,
it looks for any operations that were scheduled to run prior to the
current date and time and commences them. Thus, if emuoperations
is scheduled to run once per day, it will commence any operation
scheduled to run in the previous 24 hours: in theory an operation
could have been scheduled to run 23 hours and 59 minutes earlier. If
emuoperations is to be run once per day, it probably makes sense
therefore to schedule operations close to the time at which
emuoperations is run. Alternatively, emuoperations can be run at
various times throughout the day.

emuoperations will also re-run any previous operations that did not complete.

How to create an additional type of Scheduled Operation

Scheduled Operations

23

Accessing information from a Scheduled
Operations record

Each type of Scheduled Operation registers a function that is called to process the
operation. For example, the Delete Scheduled Operation is performed by a registered
function called Delete.

sub

Register

{

 my $plugins = shift;

 #

 # We handle the "Delete" method.

 #

 $plugins->{"Delete"} = \&Delete;

}

The function is passed two parameters:

 An IMu session which allows access to EMu records to perform the operation.

 A hash of data from a Scheduled Operations record with details about this
particular operation (i.e. when, what records are affected, what module, etc.).
sub

Delete

{

 my $imusession = shift;

 my $record = shift;

 #

 # Run the "Delete" operation.

 #

 …

}

How to create an additional type of Scheduled Operation

24

Scheduled Operations

The list of keys available in the hash are:

Irn The IRN of a record in the Scheduled Operations module
with details about this scheduled operation.

Name The name of the operation.

Type The type of operation.

Module The module the operation is to be performed on.

ActionIrn The target IRN for the Merge operation.

IrnsToProcess The list of IRNs that the operation needs to process.

IrnsProcessed The list of IRNs that the operation has already processed.

 Typically this would be an empty list except when
an operation failed to complete.

Directory The directory which contains files / information required
by an operation to process.

Identifier An identifier to add to records updated as part of running
the operation.

The values for the keys are accessed through the $record parameter, e.g.:

$record->{Module}

-OR-

@{$record->{IrnsToProcess}}

How to create an additional type of Scheduled Operation

Scheduled Operations

25

An example operation

In this example a list of IRNs is deleted:

#!/usr/bin/perl

use strict;

use warnings;

use lib "$ENV{EMUPATH}/utils/imu/lib";

use IMu::Module;

Registration function.

no warnings 'redefine';

sub

Register

{

 my $plugins = shift;

 #

 # We handle the "Delete" method.

 #

 $plugins->{"Delete"} = \&Delete;

}

use warnings 'redefine';

The handler for the "Delete" operation

sub

Delete

{

 my ($imusession, $record) = @_;

 my ($attachments, $start, @deleteirns, $irn, $i);

 #

 # Check that we have the required information

 #

 if (! defined($record->{IrnsToProcess}) ||

@{$record->{IrnsToProcess}} == 0)

 {

 FileLog("Error: no irns supplied for

deletion");

 return(1);

 }

 elsif (! defined($record->{Module}) or $record-

>{Module} eq "")

 {

 FileLog("Error: delete module is not

defined");

 return(1);

How to create an additional type of Scheduled Operation

26

Scheduled Operations

 }

 #

 # Get the other information that we need to process

 #

 $attachments = GetAttachmentFields($record-

>{Module});

 @deleteirns = @{$record->{IrnsToProcess}};

 $start = GetStartPosition($record);

 FileLog("Running DELETE plugin for $record-

>{Module}");

 FileLog("%d records scheduled for deletion, starting

at position $start", scalar(@deleteirns));

 #

 # Now delete each record in turn

 #

 for ($i = $start; $i < @deleteirns; $i++)

 {

 $irn = $deleteirns[$i];

 FileLog("Deleting irn $irn...");

 last if (! ProcessDeletion($imusession,

$attachments, $irn, $record));

 AddToProcessed($irn);

 }

 return($i != @deleteirns);

}

Do the actual deletion work

sub

ProcessDeletion

{

 my ($imusession, $attachments, $irn, $record) = @_;

 my ($table, $colname, $module, @matches, $hits,

%found, $key, $column);

 eval

 {

 %found = ();

 foreach $key (keys %{$attachments})

 {

 #

 # The assignment here is unusual but

it gets around an

 # odd foreach scoping problem after

an exception is thrown.

 #

 $table = $key;

 $module = IMu::Module->new($table,

$imusession);

 foreach $column (keys

%{$attachments->{$table}})

How to create an additional type of Scheduled Operation

Scheduled Operations

27

 {

 #

 # Find records which match

this irn

 #

 $colname = $column;

 $hits = $module-

>findTerms([$colname, $irn]);

 next if ($hits <= 0);

 #

 # Add records to found hash

 #

 FileLog("Found $hits matches

for $colname in $table");

 push(@{$found{$table}-

>{$colname}}, GetMatches($module));

 }

 }

 };

 if ($@)

 {

 FileLog("Error: failed to process $colname

in $table for irn $irn: $@");

 return(0);

 }

 @matches = keys %found;

 if (@matches)

 {

 #

 # Log that we cannot delete the record

 #

 FileLog("Unable to delete irn $irn because

it is attached in the following places:");

 foreach $table (@matches)

 {

 foreach $colname (keys

%{$found{$table}})

 {

 FileLog("\tModule: $table,

Column: $colname, Record(s): " . join(", ",

@{$found{$table}->{$colname}}));

 }

 }

 }

 else

 {

 #

 # Delete the record

 #

 DeleteRecord($imusession, $irn, $record);

 }

 #

 # Add irn to processed

How to create an additional type of Scheduled Operation

28

Scheduled Operations

 #

 return(1);

}

Delete the record

sub

DeleteRecord

{

 my ($imusession, $irn, $record) = @_;

 my ($module, $hits, $result);

 eval

 {

 $module = IMu::Module->new($record-

>{Module}, $imusession);

 $hits = $module->findKey($irn);

 if ($hits > 0)

 {

 $result = $module->remove("start",

0, 1);

 if ($result == 0)

 {

 FileLog("Failed to delete

irn $irn from $record->{Module}");

 }

 }

 else

 {

 FileLog("Failed to find irn $irn in

$record->{Module}");

 }

 };

 if ($@)

 {

 FileLog("Failed to delete $irn from $record-

>{Module}: $@");

 }

}

Get all the records that match the attachment query

sub

GetMatches

{

 my ($module) = @_;

 my ($result, @matches, $row);

 #

 # Get all of the records at once

 #

How to create an additional type of Scheduled Operation

Scheduled Operations

29

 @matches = ();

 $result = $module->fetch("start", 0, -1, "irn");

 if ($result->{count})

 {

 #

 # Get the irn for each row and push it to

the list of matches

 #

 foreach $row (@{$result->{rows}})

 {

 push(@matches, $row->{irn});

 }

 }

 return(@matches);

}

1;

How to create an additional type of Scheduled Operation

30

Scheduled Operations

Useful functions that may be called from
within an operation

The following functions are available to be called for use within an operation:

OpenLogFile (page 31) Opens a results log file and adds it to the list of
Result Files.

FileLog (page 31) Writes a message to the standard operation
Result File.

GetStartPosition (page 32) Determines from what position to start
processing the IrnsToProcess list.

AddToProcessed (page 32) Adds the processed IRN to the IrnsProcessed
list.

GetAttachmentFields (page 33) Returns a hash of all attachment fields for a
module.

How to create an additional type of Scheduled Operation

Scheduled Operations

31

OpenLogFile

Input parameters: Filename

Returns: File Handle for writing and an indication if the file already exists
(from a previous attempt to run the operation)

sub

DoSomething

{

 my $handle;

 my $exists;

 #

 # Open a file for logging results.

 #

 ($handle, $exists) = OpenLogFile("results.csv");

 if ($exists)

 {

 print $handle "...Resuming processing...";

 }

 …

 close($handle);

}

FileLog

Input parameters: Format string and parameters

Returns: Nothing

sub

DoSomething

{

 #

 # Log a message.

 #

 FileLog("Error: no irns supplied for deletion");

 …

 #

 # Log a formatted message.

 #

 FileLog("%d records scheduled for deletion, starting

at position $start", scalar(@deleteirns));

}

How to create an additional type of Scheduled Operation

32

Scheduled Operations

GetStartPosition

Input parameters: Record hash passed to operation

Returns: Index into IrnsToProcess

sub

Operation

{

 my $imusession = shift;

 my $record = shift;

 my $start;

 #

 # Get the start position for processing the

operation.

 #

 $start = GetStartPosition($record);

 …

}

AddToProcessed

Input parameters: IRN

Returns: Nothing

sub

Operation

{

 my $imusession = shift;

 my $record = shift;

 my $irn;

 …

 #

 # Finished processing the operation on an irn.

 #

 AddToProcessed($irn);

 …

}

How to create an additional type of Scheduled Operation

Scheduled Operations

33

GetAttachmentFields

Input parameters: Module

Returns: A hash of modules with attachment columns to the requested
module

sub

Operation

{

 my $imusession = shift;

 my $record = shift;

 my $attachments;

 my $module;

 my $column;

 …

 #

 # Get the attachment fields for the operation

module.

 #

 $attachments = GetAttachmentFields($record-

>{Module});

 …

 #

 # Process the attachment fields.

 #

 foreach $module (keys %{$attachments})

 {

 foreach $column (keys %{$attachments-

>{$module}})

 {

 …

 }

 }

 …

}

emuoperations

Scheduled Operations

35

emuoperations

emuoperations is a script used to execute scheduled operations.

 A date and time specified in a Scheduled Operations record is the
earliest that the operation will be run. The actual time at which an
operation is run will depend on when the emuoperations script is
scheduled to run (page 22). When run, emuoperations looks for any
operations that were scheduled to run prior to the current date and
time and commences them. Thus, if emuoperations is scheduled to
run once per day, it will commence any operation scheduled to run in
the previous 24 hours (in theory an operation could have been
scheduled to run 23 hours and 59 minutes earlier). If emuoperations
is to be run once per day, it probably makes sense therefore to
schedule operations close to the time at which emuoperations is run.
Alternatively, emuoperations can be run at various times throughout
the day.

Using emuoperations

emuoperations may be used in two ways:

1. Run all Scheduled Operations

Usage: emuoperations

Any Scheduled Operations required to be run will be executed. The current date
and time is used to determine what operations are required. This form of the
command is used by cron on a daily basis to ensure all Scheduled Operations for
the given day are performed.

2. Run a specific Scheduled Operation

Usage: emuoperations -iirn

The irn argument is the IRN of a Scheduled Operations record to be executed.
This form of emuoperations is useful for testing new operations as it allows a
specific operation to be run without waiting for the Scheduled Operations date
and time to arrive.

S E C T I O N 5

emuoperations

36

Scheduled Operations

Configuring emuoperations

The emuoperations script connects to an imuserver to perform the scheduled
operations. This connection needs to be made on a specific port. By default the
standard EMu configuration port for IMu is the port number 20,000 greater than
EMu’s client connection port. For example, if the standard EMu client connection
port is 20000, the standard imuserver connection port is 40000.

The emuoperations imuserver must run on a different port to perform the
scheduled operations. The eoperations load starts the imuserver for handling
operation requests. The port for emuoperations to connect on is defined by the
EMUSERVERPORT environment variable plus 30000. EMUSERVERPORT is the port the
EMu client uses to connect to the EMu server and corresponds to the Service value
entered in the EMu Client login box.

It is recommended that the Administrator sets the EMUSERVERPORT environment
variable in the etc/config file on the EMu server. Add the following text to the end
of the etc/config file (if it does not exist already):

EMUSERVERPORT is the port the EMu client uses to connect to the

EMu server.

The port corresponds to the "Service" value entered in the EMu

Client Login box.

EMUSERVERPORT=port

export EMUSERVERPORT

where port is the service name used to connect to this EMu server.

Scheduled Operations

37

Index

A

Accessing information from a Scheduled Operations

record • 23

AddToProcessed • 30, 32

An example operation • 25

C

Configuring emuoperations • 36

D

Delete Operation

the Delete tab • 3, 6, 11

E

emuoperations • 4, 22, 35

Examples • 12

F

FileLog • 30, 31

G

GetAttachmentFields • 30, 33

GetStartPosition • 30, 32

H

How to create an additional type of Scheduled Operation

• 2, 4, 19

How to schedule an operation • 3

I

Image Import Operation

the Image Import tab • 3, 8

Invoking a scheduled operation • 4, 22, 35

M

Merge Operation

the Merge tab • 3, 10

O

OpenLogFile • 30, 31

Overview • 1

S

Save a Result File • 18

Save all Result Files • 18

Scenario 1 • 12

Scenario 2 • 14

Storage of Scheduled Operations scripts • 20

T

The Operation tab • 3, 6, 10

U

Useful functions that may be called from within an

operation • 30

Using emuoperations • 35

V

View Result Files • 17

Viewing Operation Results • 17

