

www.kesoftware.com
© 2012 KE Software. All rights reserved.

EMu Documentation

Dynamic Security
Document Version 1.3

EMu Version 4.1

Contents
S E C T I O N 1 Dynamic Security 1

S E C T I O N 2 Security Update 3

Examples 5
What's happening behind the scenes 8
The order of processing 10

S E C T I O N 3 Column Access Modifier 11

Examples 13

S E C T I O N 4 Mandatory Modifier 17

Examples 18

S E C T I O N 5 Conclusion 21

Index 23

Dynamic Security

 Page 1

Dynamic Security
The default security model used by EMu is static in nature. User and Group privileges are
defined in the EMu Registry and loaded into a module when it is invoked. Once invoked the
security of the module remains the same throughout its lifetime. If a user can change the
contents of a given field, then they can change it for all records (assuming Record Level
Security allows the record to be modified). In some instances it would be useful to allow
some security settings to be altered based on information stored in the current record.

For example:

1. Storage staff in a group called Storage are able to change all fields for records of type
Crate and Frame, while for Object records they can only update the dimensions
information. The current EMu security model does not provide a mechanism for
implementing this requirement via Registry settings. It is possible to "hard wire" such
functionality into the EMu client, however it becomes very difficult to change as new
requirements arise.
What would be useful is a mechanism that allows access to a column to be modified
based on the contents of the record.

2. Similarly, you may require certain fields to be filled depending on the type of record.
For Object records you may require the Main Title to be specified, while for Crate and
Frame records the title should not be specified (in fact, it should not even be shown).
The EMu Mandatory Registry entry allows a field to be defined as mandatory, however
it is not possible to use this Registry entry to specify conditional mandatory settings.

 As with the first example, it would be useful to allow the mandatory setting for a field to
be set based on the contents of the record.

3. Alternatively, you may want to alter Record Level Security settings based on the
contents of data within the record when the record is saved. One such requirement
may be that records whose record status is set to Retired may only be edited by
users in group Admin. Such a feature can be "hard wired" into the database server.
However a solution that uses the Registry would provide a more flexible mechanism.

With the addition of three Registry settings, EMu 4.1 implements a flexible and dynamic
security model which can adapt based on the data stored within a record:

• The Column Access Modifier Registry entry handles the first example above, that is
the ability to alter column access based on the contents of the record.

• The Mandatory Modifier Registry entry handles the second example above, that is the
ability to adjust mandatory settings based on the contents of the record.

• The Security|Update Registry entry provides for the third example, that is the ability to
change Record Level Security based on the contents of the current record.

In this document we look at all three Registry entries and explain how they may be used to
provide a dynamic security model, i.e. one that changes based on the data in the current
record.

S E C T I O N 1

Security Update

 Page 3

Security Update
The Security Update Registry entry allows the contents of one or more fields to be modified
based on the value in a field whenever a record is saved (inserted or modified). Importantly,
the Record Level Security (RLS) fields:

• SecCanDisplay
• SecCanEdit
• SecCanDelete
may be adjusted, allowing the record security to be modified. However, the Registry entry is
not restricted to RLS fields, and any combination of fields may be adjusted.

The format of the entry is:

User|user|Table|table|Security|Update|column|value|settings

User|user|Table|Default|Security|Update|column|value|settings

Group|group|Table|table|Security|Update|column|value|settings

Group|group|Table|Default|Security|Update|column|value|settings

Group|Default|Table|table|Security|Update|column|value|settings

Group|Default|Table|Default|Security|Update|column|value|settings

where:

 column defines which field should be consulted to look for a matching value.

 value is an EMu based search pattern.
If there is a match of the data in column with the value query, then the
Registry entry is used and settings is applied.

 If column contains a table of values, each entry is checked against
value.

Since value is a pattern, particular attention must be paid if you want to
match the complete contents of a field.
For example, to match Collection but not Non-collection, the pattern
^Collection$ should be used. It is important to remember that value
operates in the same way as an EMu search term.
All comparisons of value are case insensitive.

S E C T I O N 2

Security Update

Page 4

 settings is a semi-colon separated list of assignments to columns that is applied if
there is a match of the data in column with the value query.
The format of settings is:
column=[+/-]term:[+/-]term:...;column=[+/-]term:...
where:

 column is the name of the column to be modified.

 term is the value to be set in column.
• If term is preceded by a plus symbol (+), the value is

added to the existing list of values.
• If term is preceded by a minus sign (-), the value is

removed from the existing list of values.
• If no symbol precedes a term, the current contents of

column are removed and replaced with term.
• If more than one term is supplied for a given column,

separated by colons (:), each term is applied one after
the other.

• If more than one column is to be modified, each set of
column settings is separated by a semi-colon (;).

Security Update

 Page 5

Examples

If we want Record Level Security to be adjusted so that users in group Admin are the only
ones allowed to edit and delete records that have a record status of Retired, the following
entry can be used:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 Default

Key 5 Security

Key 6 Update

Key 7 SecRecordStatus

Key 8 ^Retired$

Value SecCanEdit=Group Admin;SecCanDelete=Group Admin
Keys 7 and 8 indicate that the entry only applies where the SecRecordStatus field matches
the pattern ^Retired$ (i.e. where the field contains Retired only). If this is not the case,
then the Registry entry is ignored. Where a record does match, the SecCanEdit field is set to
Group Admin. As a leading plus or minus is not supplied, the contents of SecCanEdit are
replaced with Group Admin. A similar update occurs for SecCanDelete.

A more complex example would involve removing edit access for all users in groups
Conservation and Storage when an object is deaccessioned. Let's assume that the field
RecObjectStatus contains the word Deaccessioned for objects that are no longer part of our
collection. A suitable Registry entry would be:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Security

Key 6 Update

Key 7 RecObjectStatus

Key 8 ^Deaccessioned$

Value SecCanEdit=-Group Conservation:-Group Storage

Security Update

Page 6

Notice how the terms to set have a leading minus sign, indicating the term (in this case the
group name) is to be removed from the field SecCanEdit.

A third example requires all records with an object valuation of High to have group Student
removed and group Valuers added for both displaying and editing the record. The field
containing the object valuation is ValValuationCode. A suitable Registry entry is:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Security

Key 6 Update

Key 7 ValValuationCode

Key 8 ^High$

Value SecCanDisplay=-Group Student:+Group Valuers; SecCanEdit=-Group
Student:+Group Valuers

Notice how more than one field may be updated with a single Registry entry. Note also:

• If a term has a leading plus symbol and the term already appears in the field, it is not
added again.

• Similarly, if a term has a preceding minus and it does not appear in the field, it is
ignored.

In this final example we restrict the display privilege for records that have not been approved
for viewing on the intranet to groups Admin, Curator, Storage and Conservation. Once the
record has been approved for viewing on the intranet we will allow all users to view the
record. In this case two Registry entries are required:

• The first restricts access for records not available on the intranet.
• The second allows access to all users for record available on the intranet.
Suitable Registry entries are:

Security Update

 Page 7

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Security

Key 6 Update

Key 7 AdmPublishWebPasswordFlag

Key 8 N

Value SecCanDisplay=Group Admin:+Group Curator:+Group Storage:+Group
Conservation

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Security

Key 6 Update

Key 7 AdmPublishWebPasswordFlag

Key 8 Y

Value SecCanDisplay=Group Default

Notice how the first term in the first Registry entry (Group Admin) does not have a leading
plus or minus, meaning it replaces the current contents of SecCanDisplay. The following
terms require a leading plus symbol otherwise they will also clear the current contents rather
than adding to the first term. The second Registry entry replaces the contents of
SecCanDisplay with group Default (this allows access for everyone).

By using a combination of Registry entries it is possible to produce quite sophisticated and
dynamic privilege changes.

Security Update

Page 8

What's happening behind the scenes

The Security Update Registry entry is a Record Level Security based Registry entry and like
all RLS Registry entries it is enforced by the database engine. The security file stored in
the table directory provides the configuration used for RLS. The XML format of the security
file has been extended to allow the contents of the Security Update Registry entry to be
accommodated. Consider this entry:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Security

Key 6 Update

Key 7 SecRecordStatus

Key 8 ^Retired$

Value SecCanEdit=Group Admin:+Group Registration;SecCanDelete=Group
Admin:+Group Registration

The extra XML generated in the security file for this entry is:

<updates>
 <update name="SecRecordStatus" value="^Retired$">
 <columns>
 <column name="SecCanEdit">
 <values>
 <value operation="replace" term="Group Admin"/>
 <value operation="add" term="Group Registration"/>
 </values>
 </column>
 <column name="SecCanDelete">
 <values>
 <value operation="replace" term="Group Admin"/>
 <value operation="add" term="Group Registration"/>
 </values>
 </column>
 </columns>
 </update>
</updates>

As you can see the XML follows the sequencing of the Registry entry. If multiple Registry
entries exist, the <update> tags are repeated.

Security Update

 Page 9

The good news is that you do not need to add the XML to the security file. Whenever a
security based Registry is added or modified in EMu, the security file is rebuilt
automatically, and all you need to do is add the Registry entries.

Security Update

Page 10

The order of processing

The database server applies the Security Update settings whenever a record is saved (i.e.
for all insertions and updates). The entries are applied after assignment expressions have
been executed and before validation is run. This means that assignment expressions may
be used to build a composite value that may be tested by Security Update settings. For
example, it is possible to concatenate two fields into one that may then be checked.

It is also possible to apply sophisticated formula to calculate a field to be checked. For
example, you may want to set Security Update Registry entries based on a range of
valuations for an object. You could use an assignment expression to set a value in a field
based on the ranges:

Range Value

$0 - $1000 Cheap

$1001 - $10000 Average

$10001 - Pricey

You may then use the three values, Cheap, Average and Pricey in Security Update Registry
entries. Note that you cannot use validation code to compute values as the Security Update
entries are applied before validation code is executed.

Column Access Modifier

 Page 11

Column Access Modifier
As the name suggests, the Column Access Modifier Registry entry is used to modify the
default Column Access values based on data found in the current record.

The format of the Registry entry is:

User|user|Table|table|Column Access Modifier|column|value|settings
User|user|Table|Default|Column Access Modifier|column|value|settings
Group|group|Table|table|Column Access Modifier|column|value|settings
Group|group|Table|Default|Column Access Modifier|column|value|settings
Group|Default|Table|table|Column Access Modifier|column|value|settings
Group|Default|Table|Default|Column Access Modifier|column|value|settings
where:

 column defines which field should be consulted to look for a matching value.

 value is a case-insensitive match (i.e. patterns/wildcards are not allowed unlike with
the Security Update entry). The value is checked against the complete contents
of column. The comparison is case insensitive. If column is a table of values,
then each entry in the table is tested. If one matches, the Registry entry applies.
Values of NULL and NOT NULL may be used to represent empty and non-empty
values respectively.

 settings is a semi-colon separated list of assignments to columns that is applied if there
is a match of the data in column with the value query.
The format of settings is:
column=[+/-]perm:[+/-]perm:...;column=[+/-]perm:...
where:

 column is the name of the column to be modified.

 perm is the permission to be adjusted.
• A leading plus sign is used to add a permission.
• A leading minus sign removes a permission.
• If no sign is supplied, the current permissions are replaced

(this works the same as for the Security Update entry).
The list of possible values for perm is:

• dvDisplay - see column while viewing a record.
• dvEdit - see column while modifying a record.
• dvInsert - see column while inserting a record.

S E C T I O N 3

Column Access Modifier

Page 12

• dvQuery - see column while searching for a record.
• duEdit - change column while modifying a record.
• duInsert - change column while inserting a record.
• duQuery - change column while searching for a record.
• duReplace - use column in a global replace command.

Column Access Modifier

 Page 13

Examples
For this example, we want to ensure the current location field cannot be updated for
deaccessioned objects, i.e. we want to remove the duEdit permission where the object
status is deaccessioned. A suitable entry is:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access Modifier

Key 6 RecObjectStatus

Key 7 Deaccessioned

Value LocCurrentLocation=-duEdit
Now when deaccessioned objects are displayed, the current location field will be greyed out
(indicating that it cannot be modified). To restrict the above entry to users in group Curator
only, you would need to change Key 2 to Curator.

The Column Access Modifier Registry entry is generally set on a group or user basis.

Unlike the Security Update Registry entry, where changes are applied when a record is
saved, Column Access Modifier entries are applied immediately. If the content of a column is
changed and it matches an entry, the entry is applied at once. Also, after applying any
Column Access Modifier entries, any column affected by previous changes but not updated
with the current changes will be reset to its default setting (as defined by the Column Access
Registry setting).

In this next example, we want group Student to be able to change the Notes field for records
that are not deaccessioned. In order to provide this setting the default Column Access
settings must have duEdit enabled for group Student. The Registry entries required are:

Field Value

Key 1 Group

Key 2 Student

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access

Key 6 NotNotes

Value dvQuery;dvDisplay;dvEdit;dvInsert;duEdit;duInsert;duQuery;duReplace

Column Access Modifier

Page 14

Field Value

Key 1 Group

Key 2 Student

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access Modifier

Key 6 RecObjectStatus

Key 7 Deaccessioned

Value NotNotes=-duEdit

The first entry sets the default permissions for the column NotNotes. Notice that duEdit is
enabled by default. This allows users in group Student to change the contents of the field.

The second entry modifies the default settings to turn off duEdit where the object is
deaccessioned.

The above entries show how the Column Access Modifier Registry entry may be used with
the Column Access Registry entry to provide a predicable set of permissions for all object
status values.

In this last example we disable editing for all users in group Curator of the Other Titles field
until a value is entered into the Title field. The restriction is to apply when creating records as
well as modifying records. The following entry could be used:

Field Value

Key 1 Group

Key 2 Curator

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access Modifier

Key 6 RecMainTitle

Key 7 NULL

Value RecOtherTitles=-duEdit:-duInsert
You may have been tempted to use the following entries:

Column Access Modifier

 Page 15

Field Value

Key 1 Group

Key 2 Curator

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access Modifier

Key 6 RecMainTitle

Key 7 NULL

Value RecOtherTitles=-duEdit:-duInsert

Field Value

Key 1 Group

Key 2 Curator

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access Modifier

Key 6 RecMainTitle

Key 7 NOT NULL

Value RecOtherTitles=+duEdit:+duInsert
to ensure that users can edit the Other Titles field if the main title is filled. The second
Registry entry forces the edit and insert privileges to be enabled even if the default Column
Access settings do not allow it. It may be your intention to have this behavior, however the
original brief only stipulated that edit and insert permissions should be disabled for other
titles if the main title is empty. It is not expressed what the permissions should be if the main
title is filled. Another way of writing the second set of Registry entries is:

Field Value

Key 1 Group

Key 2 Curator

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access

Key 6 RecOtherTitles

Value dvQuery;dvDisplay;dvEdit;dvInsert;duEdit;duInsert;duQuery;duReplace

Column Access Modifier

Page 16

Field Value

Key 1 Group

Key 2 Curator

Key 3 Table

Key 4 ecatalogue

Key 5 Column Access Modifier

Key 6 RecMainTitle

Key 7 NULL

Value RecOtherTitles=-duEdit:-duInsert
In this case the default column permissions enable edit and insert privileges, while the
second Registry entry disables edit and insert if the main title is empty. If the main title is
filled, the default permissions are applied, hence enabling edit and insert privileges.

Mandatory Modifier

 Page 17

Mandatory Modifier
The Mandatory Modifier Registry entry is used to modify the mandatory setting for a given
field based on data found in the current record.

The format of the Registry entry is:

User|user|Table|table|Mandatory Modifier|column|value|settings
User|user|Table|Default|Mandatory Modifier|column|value|settings
Group|group|Table|table|Mandatory Modifier|column|value|settings
Group|group|Table|Default|Mandatory Modifier|column|value|settings
Group|Default|Table|table|Mandatory Modifier|column|value|settings
Group|Default|Table|Default|Mandatory Modifier|column|value|settings
where:

 column defines which field should be consulted to look for a matching value.

 value is a case-insensitive match (i.e. patterns/wildcards are not allowed unlike
with the Security|Update entry). The value is checked against the complete
contents of column. The comparison is case insensitive. If column is a table
of values, then each entry in the table is tested. If one matches, the Registry
entry applies. Values of NULL and NOT NULL may be used to represent empty
and non-empty values respectively.

 settings is a semi-colon separated list of assignments to columns that is applied if
there is a match of the data in column with the value query.
The format of settings is:
column=setting;column= setting;...
where:

 column is the name of the column to be modified.

 setting is true (the column should be mandatory) or false (the column
should not be mandatory, i.e. remove the mandatory setting).

S E C T I O N 4

Mandatory Modifier

Page 18

Examples

Example 1
For this example, we want the Main Title field to be mandatory, but only if the record type is
Object. A suitable entry is:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Mandatory Modifier

Key 6 RecObjectType

Key 7 Object

Value TitMainTitle=true

Now when the record type is set to Object the Main Title field must be filled before the
record can be saved successfully. If Main Title is not completed, the standard error message
is displayed. You may tailor the error message shown using the Mandatory Registry entry.
For example:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Mandatory

Key 6 TitMainTitle

Value False;Please enter a Main Title for the Object

will display the error message Please enter a Main Title for the Object if the field is not filled
while the mandatory setting is true. A false value indicates the field is not mandatory by
default.

Mandatory Modifier

 Page 19

Example 2
The above example shows how to alter the mandatory setting for a field (TitMainTitle) based
on the value in another field (RecObjectType). In this example the mandatory setting for
more than one field is altered based on the values of multiple fields. If the record type is set to
Object and the object status is set to Accessioned, then the Accession Number, Date
Accessioned and Accession Lot fields must be supplied:

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Mandatory Modifier

Key 6 RecObjectType

Key 7 Object

Value TitAccessionNo=true;TitAccessionDate=true;TitAccessionLot=true

Field Value

Field Value

Key 1 Group

Key 2 Default

Key 3 Table

Key 4 ecatalogue

Key 5 Mandatory Modifier

Key 6 TitObjectStatus

Key 7 Accessioned

Value TitAccessionNo=true;TitAccessionDate=true;TitAccessionLot=true

Where multiple values are to be checked, a Mandatory Modifier Registry entry is required for
each value for each column. Where multiple Registry entries match based on the values
within fields (as with the previous example where both the object type and object status
matched) the mandatory settings are ANDed together. This means that unless all the
settings for a given field are true, mandatory is set to false.

Conclusion

 Page 21

S E C T I O N 5

Conclusion
EMu 4.1 sees the addition of three new Registry entries. The first, Security|Update, allows
record level permissions to be altered when a record is saved, based on the contents of the
record. The second, Column Access Modifier, allows field based privileges to be altered
based on the contents of the record. The third, Mandatory Modifier, allows mandatory fields
to be specified based on the contents of the record. The combination of the three facilities
provides a useful mechanism for altering the EMu security settings dynamically. The use of
dynamic security allows very flexible security models to be implemented.

Index

C

Column Access Modifier • 11
Conclusion • 17

D

Dynamic Security • 1

E

Examples • 5, 12

S

Security Update • 3

T

The order of processing • 9

W

What's happening behind the scenes • 8

	Dynamic Security
	Security Update
	Examples
	What's happening behind the scenes
	The order of processing

	Column Access Modifier
	Examples

	Mandatory Modifier
	Examples
	Example 1
	Example 2

	Conclusion
	Index

